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Introduction

Climate change is considered one of the biggest chal-
lenges for governments and managers as it may sig-
nificantly accelerate loss of biodiversity (Intergovern-
mental Panel on Climate Change 2018; Arneth et al. 
2020; Manes et al. 2021). Anthropogenic activity has 
increased atmospheric greenhouse gases concentra-
tion, particularly carbon dioxide  (pCO2), causing the 
oceans to become warmer and more acidic (Dupont 
and Pörtner 2013; Intergovernmental Panel on Cli-
mate Change 2018). Climate models project a rise in 
 pCO2 to levels of about 1000 ppm by the year 2100 
(Raven et al. 2005). As a consequence, the ocean pH 
is expected to decline by up to 0.4 units by the end 
of the century (Gattuso et  al. 2010; Riebesell et  al. 
2011). Even though ocean warming and acidifica-
tion are considered to be some of the biggest threats 
to marine biodiversity, the individual and synergis-
tic effects of these stressors on elasmobranch fishes 
(sharks and rays) are still clearly understudied (Rosa 
et  al. 2017a; Di Santo 2019; Wheeler et  al. 2020; 
Bouyoucos et al. 2020). Previous work on ocean acid-
ification and warming has focused mostly on teleost 
fishes while the effect on elasmobranchs has been 
investigated to a much lesser degree (for example: 
Lauder and Di Santo 2015; Johnson et al. 2016; Rosa 
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et al. 2017a, b; Di Santo 2019; Wheeler et al. 2020; 
Mirasole et al. 2020).

Marine organisms vary in their physiological and 
morphological characteristics and, as a result, their 
individual responses to ocean warming and ocean 
acidification differ significantly (Harvey et al. 2013). 
For this reason, efforts may be focused on identify-
ing key traits that make “physiotypes”, i.e., organ-
isms with similar physiological characteristics, more 
or less susceptible to climate-related stressors (Nel-
son 1970; Melzner et al. 2009; Di Santo et al. 2016). 
Responses to ocean warming and acidification may 
vary across the life history of organisms, with embry-
onic and juvenile stages being the most vulnerable 
(Lear et  al. 2019), with acclimation (short vs. long 
term exposure), and across populations (Donel-
son et al. 2012; Frommel et al. 2012; Bignami et al. 
2013; Harvey et  al. 2013; Di Santo 2015; Downie 
et  al. 2020; Gervais et  al. 2021). Some long-lived 
organisms may experience a wide spectrum of envi-
ronmental change, while others with faster genera-
tional turnover may only experience relatively stable 
conditions within their lifetime (Melzner et al. 2009; 
Somero 2010). As a consequence, some individuals 
may be able to acclimate over a relatively long period 
of time while some populations may rapidly adapt to 
the changes in their environment across generations 
favoring physiotypes that are resilient in the new con-
ditions (Munday 2014; Ryu et  al. 2018). Organisms 
can also employ other solutions, such as shifting their 
geographic range, to respond to environmental chal-
lenges (Harvey et  al. 2013; Rosa et  al. 2014; Brow-
man 2017). Changes in locomotor performance, 
behavior and geographic range at large and small 
scale may have cascading and unexpected effects on 
biotic interactions, community structures and ecosys-
tem functioning (Harvey et  al. 2013; Di Santo et  al. 
2020). Thus, it is important to investigate how per-
formance of different physiotypes may be affected 
under climate change to better forecast future shifts in 
marine ecosystems (Di Santo 2016).

Elasmobranchs are ecologically important as they 
fill many niches across a wide range of biota, from 
benthic, to coral reefs to open oceans (Wilga and 
Lauder 2004; Lauder and Di Santo 2015; Flowers 
et al. 2020). They typically occupy high trophic lev-
els as top or meso-predators, thus playing a key role 
in the health of marine ecosystems (Rosa et al. 2014; 
Pistevos et al. 2015). They are characterized by slow 

growth and relatively long lifespans, and tend to have 
higher survival rates as juveniles when compared 
to teleost fishes (Wellington and Victor 1989; Chin 
et  al. 2010). However, their relatively low genera-
tional turnover rate makes them particularly vulner-
able to rapid changes in the environment (Chin et al. 
2010; Rosa et  al. 2014). Predictions of responses to 
climate change often involve modeling of geographic 
shifts (Parmesan et al. 1999; Saba et al. 2016). How-
ever, such projections of poleward movements need 
to consider swimming capacity and cost of transport. 
In fact, an efficient locomotor capacity would allow 
fishes to effectively relocate to environmental refugia 
(Lauder and Di Santo 2015). It is currently virtually 
unknown if elasmobranchs’ swimming performance 
levels may be maintained in response to climate 
change because only limited studies on relatively few, 
and especially benthic species have been conducted to 
date (Wilga and Lauder 2004; Aronson et  al. 2007; 
Papastamatiou et  al. 2015; Di Santo 2016; Payne 
et al. 2018; Lear et al. 2019).

Elasmobranch fishes display a great morphologi-
cal diversity in body shapes that results in extraordi-
nary locomotor diversity (Rosenberger 2001; Wilga 
and Lauder 2004; Lauder and Di Santo 2015; Porter 
et al. 2020). For instance, sharks exhibit an elongated 
body and swim using mostly their trunk and tail in 
an undulatory motion, while rays (i.e., skates and 
rays) have short, stiff head trunk regions forming a 
disc with slender tail and therefore swim using the 
pectoral fins (with a few exceptions) in undulatory 
(i.e., wave-like motion) or oscillatory (i.e., flapping 
up and down) motions (Rosenberger and Westneat 
1999; Rosenberger 2001; Wilga and Lauder 2004). 
Morphological and kinematic characteristics of the 
body and fins explain how elasmobranch fishes move 
and provide cues on important adaptations that are 
involved with efficient locomotion (Lauder and Di 
Santo 2015; Di Santo et al. 2021). In this review, we 
examine the effects of ocean warming and acidifica-
tion on locomotion in sharks and rays. We also briefly 
review major studies on the effect of warming and 
ocean acidification on locomotor performance of tel-
eost fishes because of the paucity of work on elasmo-
branchs. We have based our review on studies where 
the effect of ocean warming and/or acidification was 
assessed on skeletal morphology, locomotor behav-
ior and physiology of elasmobranch fishes. We also 
discuss features that characterize tolerant physiotypes 
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under the two major climate change stressors in rela-
tion to swimming performance.

Locomotor performance

Locomotion is a key process in nearly all fishes, 
including elasmobranchs, that is involved in vital 
functions such as reproduction, migration, predator 
avoidance, ram ventilation, and small-scale move-
ments (Daniel 1984; Sfakiotakis et  al. 1999; Lauder 
and Di Santo 2015). Biomechanics, behavior and 
energetics of locomotion determine efficiency of 
movement and maximal performance (for instance, 
maximum speed during an escape response) under 
different conditions (Wilga and Lauder 2004; Lauder 
and Di Santo 2015), and, as such, these are the focus 
of the review. Two major locomotor behaviors are 
likely to increase survival rates in elasmobranchs: 
steady (or sustained) swimming and burst (or escape) 
performance. During steady swimming, fishes may 
modulate their speed and can often optimize energetic 
costs for large scale movements by selecting an opti-
mal velocity (Webb 1994; Saadat et al. 2017; Di Santo 
et al. 2017b). On the other hand, fishes may undertake 
energetically costly movements such as fast-starts and 
bursts to escape a predator, or to capture a prey (Jayne 
and Lauder 1994; Johnson and Bennett 1995; Fernán-
dez et al. 2002; Wen et al. 2018).

Climate change and locomotor performance in teleost 
fishes

Locomotor performance has undoubtedly contrib-
uted significantly to the evolutionary success of fishes 
(Breder 1926; Lindsey 1978). In fact, fishes display 
a remarkable diversity of morphology and behav-
iors to achieve a variety of movements, from long-
distance migrations, to fast swimming and escape 
responses (Lauder 2015). Fish locomotion is a well-
studied topic (Bainbridge 1963; Sfakiotakis et  al. 
1999; Lauder 2015; Saadat et al. 2017; Di Santo et al. 
2021), however studies on the single and combined 
effect of temperature and acidification on many traits 
that affect locomotor performance are often lacking 
within the same group of fishes. The scarcity of “full 
picture” data sets makes the identification of sensi-
tive and tolerant physiotypes complicated. Swimming 
traits that are often analyzed are maximum speed, 

metabolic rates, and escape mechanics, but rarely 
under ocean warming and acidification, and in the 
same organism (Melzner et  al. 2009; Watson et  al. 
2018).

Temperature changes can affect skeletal morphol-
ogy, swimming performance and behavior of fishes 
(von Herbing 2002; Eliason et  al. 2011; Hein and 
Keirsted 2012). Thermal stress during embryonic 
development is a known teratogenic factor that pro-
duces skeletal deformities in teleost fishes (Takle 
et  al. 2005). Warming results in severe malforma-
tions in the axial skeleton in species such as the mos-
quito fish (Gambusia affinis) and the Atlantic salmon 
(Salmo salar) where the proportion of fish with 
larger, fused and deformed vertebrae increases with 
temperature (Takle et al. 2005; Ytteborg et al. 2010; 
Sassi et al. 2010; Fraser et al. 2015). Likewise, ocean 
acidification is known to alter the morphology of the 
skeleton in teleost fishes (Powell et  al. 2009; Bau-
mann et al. 2012; Pimentel et al. 2014, 2016; DePas-
quale et al. 2015). In particular, acidification may lead 
to fusions, body malformation, and spinal curvatures 
(i.e., lordosis, scoliosis and kyphosis) (Baumann 
et al. 2012; Pimentel et al. 2014, 2016). Moreover, an 
increase in skeletal mineralization has been observed 
in site-attached fish (Gobius bucchichi) living near 
 CO2 seeps (Mirasole et  al. 2020). Malformations of 
the axial skeleton can alter swimming performance, 
foraging and predator avoidance in teleosts (Pow-
ell et  al. 2009). For instance, scoliotic teleost fishes 
achieve significantly lower swimming speed and are 
unable to recover quickly from exhaustive swimming 
when compared to control individuals (Powell et  al. 
2009).

Temperature also shapes the performance or aero-
bic scope of swimming (Fry 1947, 1967; Fry and 
Hart 1948). The concept of aerobic scope was intro-
duced by Fry and Hart (1948) when they quanti-
fied the effects of temperature change on maximum 
and standard metabolic rates in goldfish (Carassius 
auratus). By subtracting the standard metabolic rate 
from the maximum, they put forward the idea of 
the scope for metabolic activity, i.e., the net energy 
beyond resting that organisms have to be active (Fry 
and Hart 1948; Farrell 2016). The aerobic scope is 
a measure of thermal dependence of physiological 
processes, and it has been used broadly by ecologi-
cal physiologists to understand changes in perfor-
mance as a consequence of thermal shifts (Farrell 
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2016). Performance curves often show that warm-
ing increases swimming metabolic rates, but that the 
peak of maximum oxygen consumption rates typi-
cally precedes the peak for resting rates, thus effec-
tively showing a decline in performance at the highest 
temperatures an individual can tolerate (Fangue et al. 
2008; Farrell 2016). Warming can also have a posi-
tive effect on swimming performance. In fact, higher 
temperatures increase muscle efficiency and contrac-
tility at high speeds, making swimming much more 
energetically efficient in teleost larvae (von Herbing 
2002). Another study on herring and plaice larvae 
showed that an increase in muscle contraction perfor-
mance during escape response leads to faster bursts 
(Batty and Blaxter 1992). On the other hand, the 
same study noted that other traits, such as tail ampli-
tude and stride length, are not significantly affected 
by temperature (Batty and Blaxter 1992). Several 
studies have shown an increase in fast-start and burst 
swimming in adult fishes that resulted in enhanced 
escape performance with warming (Johnston et  al. 
1991; Wilson et al. 2001; Fernández et al. 2002; Lyon 
et al. 2008). The effect of temperature on oxygen con-
sumption during steady swimming has been investi-
gated using many species, from salmonids to Antarc-
tic fishes (some examples: Brett 1967; Wilson et  al. 
2001; Jain and Farrell 2003; Fangue et al. 2008). In 
most studies warming increases swimming endurance 
and oxygen consumption up to the organism’s ther-
mal limit where performance rapidly declines (Brett 
1964, 1967; Johnston et  al. 1991; Steinhausen et  al. 
2008; Eliason et al. 2011; McDonnell and Chapman 
2016). In some species temperature does not have a 
significant effect on swimming energetics or speed, 
unless the effect of low temperature was tested (John-
ston et al. 1991; Fangue et al. 2008).

Ocean acidification has been shown to reduce 
swimming performance in some fish species but 
responses to ocean acidification are often complex 
(Munday 2014; Browman 2017; Clark et  al. 2020). 
In fact, studies have reported an increase, a decrease, 
or no significant change in aerobic scope associated 
with swimming at high  pCO2 (Munday et  al. 2009; 
Couturier et al. 2013; Rummer et al. 2013; Esbaugh 
et  al. 2016). High  pCO2 levels decrease maximum 
speed during steady and burst swimming, and dis-
tance traveled (Allan et al. 2014; Watson et al. 2018). 
During escape responses, fishes bend their body into 
a “c”, i.e., the first stage, and then produce a fast 

burst to move away from the stimulus, i.e., the second 
stage (Jayne and Lauder 1994; Witt et al. 2015). Even 
though the bending angle during the first stage of the 
escape response may not be affected by acidification, 
fishes may be less responsive to stimuli that trigger 
the escape response (Wang et al. 2017).

To predict the long-term effects of ocean warm-
ing and acidification on swimming performance of 
fishes, it is important to consider whether physiologi-
cal and behavioral traits associated with locomotion 
may adjust, or acclimate, within the time frame in 
which these changes are occurring in the environ-
ment, i.e., a few generations (Donelson et  al. 2012). 
Although there is a dearth of studies that have evalu-
ated the effects of warming and acidification across 
fish generations, metabolic rates and swimming kin-
ematics are already known to be compensated dur-
ing environmental shifts in some species (Schade 
et  al. 2014; Shama et  al. 2014; Munday 2014; Veil-
leux et al. 2015). Such transgenerational acclimation 
could be achieved via changes in the epigenetic state 
of parental generation that is transferred to next gen-
eration by producing offspring that maintain a similar 
performance in the new environment, or a maternal 
effect that provides, for example, different amount 
of nutrition to the offspring through the yolk (Shama 
et  al. 2014; Veilleux et  al. 2015; Ryu et  al. 2018). 
However, there may be limitations to the traits that 
respond to transgenerational acclimation. Some bio-
mechanical traits such as turning angle during escape 
response are affected by increase in  pCO2 but do not 
seem to acclimate even when the parents are exposed 
to the same level of acidification (Munday 2014). On 
the other hand, exposure to acidification across gener-
ations might produce a carry-over effect thus further 
reducing performance and survival (Munday 2014). 
These early studies suggest that transgenerational 
acclimation may be inconsequential, reduce or exac-
erbate the effect of ocean acidification and warming 
on different morphological, physiological, and behav-
ioral traits associated with swimming. Understand-
ing the outcome of the single and combined effects 
of ocean warming and acidification on performance 
traits is a priority for studies that aim to realistically 
predict complex responses of organisms to changes 
in the environment. Even though just a few stud-
ies looked at transgenerational acclimation in teleost 
fishes, to our knowledge no study to date has quanti-
fied it on any elasmobranch species.
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Effect of ocean warming on locomotor performance 
in elasmobranchs

Temperature is known to have a profound effect on 
nearly every physiological process, including meta-
bolic rates (for example, Hawkins and Day 1996; 
Rosa et al. 2014; Gervais et al. 2018), but there is a 
paucity of data on the effect of temperature on mor-
phology of elasmobranchs, beyond body size, and 
swimming performance (Di Santo 2015, 2019). In 
one study, Di Santo (2019) investigated the effect of 
ocean warming on skeletal mineralization in a batoid 
fish. Little skate (Leucoraja erinacea) embryos were 
exposed to temperature projected for the year 2100 
(Di Santo 2019). Warming had a negative effect on 
the mineralization of the pectoral fins as the den-
sity of apatite decreased (Di Santo 2019). One of 
the possible causes of a reduction in mineralization 
in the pectoral fins of skates may be attributed to a 
mismatch between high growth in juveniles at higher 
temperatures and mineralization processes that might 
proceed at lower rates (Di Santo 2019). High stiffness 
of the cartilage provides an efficient energy transfer 
during locomotion (Dean and Summers 2006; Por-
ter and Long 2010). A decrease in mineralization of 
the cartilage in the pectoral fins produces higher flex-
ibility during movement but the fish needs to actively 
stiffen the fins to achieve higher swimming speeds, 
thus increasing metabolic costs during swimming (Di 
Santo et al. 2017a).

Warming also correlates with a smaller body size, 
a phenomenon so widespread across terrestrial and 
aquatic organisms that it is known as one of the uni-
versal responses to climate change (Gardner et  al. 
2011; Forster et  al. 2012; Baudron et  al. 2014). A 
smaller body size has been observed in juvenile epau-
lette shark, Hemiscyllium ocellatum, (Gervais et  al. 
2018) while juvenile little skates showed a lower body 
condition when exposed to higher temperatures (Di 
Santo 2015). In little skates, local adaptation seems to 
have a strong effect on the temperature-size relation-
ship. Skates from the areas where temperature fluctu-
ates frequently seem to be less affected by warming 
than conspecific living in more stable environments 
(Di Santo 2015, 2016). Populations of Port Jackson 
sharks (Heterodontus portusjacksoni) also exhibit 
differences in metabolic rates in response to tempera-
ture, even though swimming performance was not 
different (Gervais et al. 2021). Smaller elasmobranch 

and teleosts fishes tend to be more tolerant to high 
temperatures and are assumed to perform better at 
higher temperatures that their larger conspecifics (Di 
Santo 2016; McKenzie et  al. 2020). In particular, 
smaller skates escape more intensely (burst/min) and 
can recover faster after a chasing experiment when 
compared to larger conspecifics at the same tempera-
tures (Di Santo 2016). Even though smaller fishes 
are known to perform better under increasing tem-
peratures, a small body size can significantly impair 
long-distance locomotor capacity by increasing cost 
of transport in skates (Dulvy et al. 2014; Lauder and 
Di Santo 2015; Di Santo and Kenaley 2016; Di Santo 
et al. 2017b) and sharks (Carlson et al. 2004).

Warming is associated with a reduced aerobic 
scope for activity and increased stress (Schwieter-
man et al. 2019). It has been suggested that some fish 
species that live close to their thermal optimum may 
experience a reduction in the amount of available 
energy for aerobic activities, such as locomotion, with 
warming (Rummer et  al. 2014). Elasmobranch spe-
cies that are fast swimmers and obligate ram ventila-
tors have the highest measures of routine metabolic 
rates to maintain, for example, higher digestion rates 
and, in some cases, heterothermy, and therefore are 
expected to have limited amount of energy to cope 
with environmental challenges than less active spe-
cies (Carlson et  al. 2004). On the other hand, even 
though locomotor efficiency per se may be reduced, 
these elasmobranchs may be more likely to relocate to 
a more suitable area by swimming faster (Wilga and 
Lauder 2004; Chin et al. 2010; Lauder and Di Santo 
2015). However, it is difficult to establish the effect 
of temperature on aerobic scope as many studies 
have now shown that the maximum metabolic rates 
in fishes are affected by digestion, swimming capac-
ity, stress, and other masked abiotic factors such as 
oxygen levels (Roche et al. 2013; Di Santo and Lobel 
2016; Rummer et al. 2016; Esbaugh et al. 2021; Pauly 
2021). In a previous study, Di Santo (2015) argued 
that an increase in active metabolic rate as a conse-
quence of warming, should not be always considered 
an advantage. In fact, determining the actual maxi-
mum metabolic rate is difficult and it relies heavily 
on the technique used to test swimming performance 
(Roche et al. 2013; Rummer et al. 2016), so it is pos-
sible that researchers have been routinely measuring 
the elevated costs of activity with climate stressors 
rather than an increase in aerobic scope. Conclusions 
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on the effect of temperature and other stressors on 
aerobic scope should therefore be cautious.

Predictions of future responses to climate change 
often include shifts in geographic ranges, while 
small scale alterations in habitat use have received 
less attention. Elasmobranchs can utilize the diel 
abiotic and geographical variability in their environ-
ment to decrease costs of locomotion (Papastamatiou 
et  al. 2021). Sharks and rays are known to exploit 
the thermal heterogeneity in their environment by 
selecting different temperatures throughout the day, 
a behavior known as thermotaxis (Fangue and Ben-
nett 2003; Wallman and Bennett 2006; DiGirolamo 
et  al. 2012; Speed et  al. 2012). Elasmobranchs may 
select specific temperatures to enhance physiologi-
cal processes, from swimming performance to diges-
tion to reproduction (Wallman and Bennett 2006; Di 
Santo and Bennett 2011a; Papastamatiou et al. 2015), 
while others do not seem to adjust to changes in the 
environment by thermoregulation (Nay et  al. 2021). 
One example of thermoregulation is the trade-off 
between optimal foraging and thermal habitats (Sims 
et al. 2006; Sims 2010), where sharks and rays hunt 
in warmer waters, to maximize muscle performance, 
and rest in cool waters, to slow down the passage 
of food across the absorptive surfaces and increase 
nutrient uptake, thus reducing the daily energy costs 
(Sims et  al. 2006; Sims 2010) and increasing diges-
tive efficiency (Di Santo and Bennett 2011a, b). It is 
possible therefore that elasmobranchs may not shift 
their latitudinal range with warming, but rather select 
deeper cooler waters to enhance physiological pro-
cesses. These small scales movements may be just 
as significant to the survival of sharks and rays to 
ocean warming than poleward relocations. Seasonal 
shifts towards deeper water are already occurring for 
batoids at high latitudes (Stebbing et al. 2002; Perry 
et al. 2005; Dulvy et al. 2008b; Lauder and Di Santo 
2015). Perry et  al. (2005) quantified a higher mean 
depth in the distribution of the ray Leucoraja naevus 
that correlates with warming trends. In this multi-
species study, fishes that shifted their geographic 
range tended to have faster life history compared to 
non-shifting species (Perry et al. 2005). Dulvy et al. 
(2008b) suggested that there is evidence for coher-
ent deepening of fish in response to climate change 
and found that the shift in depth was more pro-
nounced than the latitudinal shift in benthic elasmo-
branchs. Although a shift in distribution is possible, 

bathymetry (deep waters), the expansion of oxygen 
minimum zones (Di Santo et  al. 2016; Vedor et  al. 
2021), potential decoupling of current predator–prey 
dynamics and trophic structure (Deutsch et al. 2015), 
and behavioral characteristics of movement (philopa-
try, restricted home ranges) may hinder the capacity 
to relocate to more favorable refugia (Aronson et al. 
2007; Dulvy et al. 2014).

Effect of ocean acidification on locomotor 
performance in elasmobranchs

Elasmobranch fishes evolved during the Devo-
nian Period when atmospheric  CO2 was greater 
than today’s levels (Johnson et  al. 2016; Rosa et  al. 
2017a). This has led to the hypothesis that elasmo-
branch fishes may be able to tolerate ocean acidifica-
tion, and it was not until recently that experimental 
data showed that high levels of  pCO2 can affect elas-
mobranch fishes directly by causing morphological, 
behavioral and physiological anomalies (Pistevos 
et al. 2015; Rosa et al. 2017a). Di Santo (2019) evalu-
ated the effect of ocean acidification on mineraliza-
tion of the skeleton of little skates that were devel-
opmentally acclimated to pH levels expected by year 
2100. Levels of  pCO2 ~ 1100  µatm increased miner-
alization of the crura (modified pelvic fins that some 
rays use to walk underwater) and jaws in little skates 
(Di Santo 2019). Skates might even gain an advan-
tage as high mineralization of the crura is a good 
predictor of the ability of batoids to walk underwa-
ter (Koester and Spirito 2003; Macesic and Summers 
2012; Bilecenoglu and Ekstrom 2013). Apatite in the 
crura increased with  pCO2 with no significant effect 
of temperature, implying that future ocean acidifica-
tion may favor walking in benthic batoids regardless 
of warming (Di Santo 2019). On the other hand, a 
denser skeleton increases the weight of the skeleton 
thus reducing buoyancy which, in turn, increases 
energetic costs of swimming (Di Santo 2019). Elas-
mobranch do not have a swim bladder and need to 
swim in order to create hydrodynamic lift and even 
hover in the water column. Therefore, a heavier skele-
ton is expected to increase costs of locomotion at any 
speed (Di Santo et al. 2017b). While external features 
such as teeth and denticles are not affected by  pCO2 
levels expected by the end of the century (Green and 
Jutfelt 2014; Di Santo 2019), higher levels projected 
for the year 2300 are known to cause corrosion of 
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denticles in sharks (Dziergwa et  al. 2019). Denti-
cle size and morphology are important during loco-
motion as these features may increase efficiency by 
reducing the friction between the skin and the water 
(Oeffner and Lauder 2012; Wen et  al. 2014; Domel 
et al. 2018). Studies have not reported any body mal-
formation linked to acidification in elasmobranchs 
yet, and it has been suggested that elasmobranch 
embryos might be protected from acidification during 
the earliest stages of development while inside their 
mothers or in a closed eggcase (Leonard et al. 1999; 
Di Santo 2015). Additionally, elasmobranchs have 
direct development, while many teleosts go through a 
larval phase that is considered vulnerable to acidifica-
tion (Frommel et al. 2012; Bignami et al. 2013).

The combined effect of ocean warming and 
acidification on locomotor performance in 
elasmobranchs

Ocean warming and ocean acidification will occur 
simultaneously in oceans, and organisms, includ-
ing elasmobranchs, may be negatively impacted by 
the interactive effects of these stressors (Byrne and 
Przeslawski 2013; Boyd et al. 2015; Di Santo 2015; 
Pistevos et  al. 2017). Di Santo (2015, 2016, 2019) 
provides the only series of studies that have looked 
at single and combined effects of ocean warming and 
acidification on different performance traits for the 
same elasmobranch species across ontogeny. First, 
ocean warming and acidification interacted during 
mineralization of the skeleton of skates. Acidification 
increased density of the crura and the jaws at control 
temperature; however, when combined with warming, 
acidification had no significant effect on the minerali-
zation of the jaws (Di Santo 2019). On the other hand, 
warming did not reduce the effect of acidification on 
the mineralization of the crura (Di Santo 2019). Com-
plex and non-directional results are becoming com-
mon in studies of ocean acidification and warming 
across organisms (Kroeker et al. 2010, 2013; Schlegel 
et al. 2012).

Denser skeletal parts as a consequence of acidi-
fication and less mineralized pectoral fins as a con-
sequence of warming can have a profound effect on 
locomotor performance. In fact, both a heavier skel-
eton that reduces buoyancy and less stiff pectoral 
fins that need to be actively stiffened using muscles, 
increase the costs of locomotion in skates (Di Santo 

2016; Di Santo et  al. 2017a, b). During a chasing 
experiment, combined warming and acidification 
prolonged the time to recover from intense exercise 
(Di Santo 2016). A longer recovery time and higher 
energetic costs to escape may make skates vulner-
able to predators as they need to pay off the oxygen 
debt accumulated during intense sequential bursts, 
and they may need to explore the environment to seek 
additional food (Di Santo 2015, 2016). Moreover, a 
few studies have shown that hunting efficacy in sharks 
may be impaired by the effect of ocean acidification 
and warming, while other studies found no effect 
(Pistevos et al. 2015, 2017; Heinrich et al. 2016; Rosa 
et al. 2017b; Gervais et al. 2018). Elevated tempera-
ture increased swimming activity while searching for 
food and reduced the time used by elasmobranchs to 
digest (Di Santo and Bennett 2011a; Pistevos et  al. 
2017), but acidification can reduce elasmobranchs’ 
ability to use olfactory cues and increased the time 
to find food even in combination with elevated tem-
perature (Pistevos et  al. 2017). Port Jackson sharks 
under warming scenarios increased the time spent 
near chemical cues for prey but  pCO2 reduced the 
attraction to food (Pistevos et  al. 2017). Pistevos 
et  al. (2015) reported that it took four times longer 
for sharks to detect prey under elevated  pCO2. When 
combined with elevated temperature, sharks reduced 
the time to locate the prey by a third but was still sig-
nificantly longer than the time needed by control indi-
viduals (Pistevos et al. 2015). High  pCO2 may reduce 
elasmobranchs’ ability to detect prey perhaps because 
of a dysfunction of the GABAA receptor (Hamilton 
et  al. 2014), thus making some elasmobranch spe-
cies slower and less successful hunters. These stud-
ies suggest that ocean warming and acidification may 
have the potential to reduce hunting abilities in some 
elasmobranchs by disrupting olfactory capacity, thus 
requiring them to rely more on vision and electrore-
ception to find prey (Pistevos et al. 2015).

The effect of ocean warming and acidification can 
be modulated by the local environment a population 
or individual has experienced. For instance, when 
comparing the escape performance of little skate 
from two adjacent locations, the Gulf of Maine and 
the Georges Bank, under simulated warming and 
acidification conditions, the smaller skates from the 
Georges Bank were able to escape for a longer period 
of time and recovered faster from exercise (Di Santo 
2016). It is unclear however, whether there was a 
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maternal effect given by the periodic exposure of 
egg-laying females to low-pH upwelling waters in the 
Georges Bank (Mavor and Bisagni 2001; Raven et al. 
2005) or a smaller body size favored locomotor per-
formance in that particular population of skates (Di 
Santo 2016). Additional studies are needed to under-
stand the role of local adaptation and size on loco-
motor performance in elasmobranchs under climate 
change scenarios.

Consequences of alterations in locomotion 
efficiency on geographic shifts

Low locomotor efficiency is associated with a 
reduced capacity for migrating, hunting, and effec-
tively utilizing the environment through small-scale 
movements (Lauder 2015; Lauder and Di Santo 
2015). At a global scale, fishes migrate to relocate 
to more favorable conditions  and find thermal refu-
gia (Stebbing et  al. 2002; Perry et  al. 2005; Dulvy 
et al. 2008b). Even though there are no apparent geo-
graphic barriers to marine dispersal (Aronson et  al. 
2007), a reduction in locomotion efficiency can limit 
elasmobranch movement and the capacity to relocate.

Large scale migrations to find thermal refugia 
occur as a poleward expansion or towards deeper 
waters (Stebbing et al. 2002; Perry et al. 2005; Dulvy 
et  al. 2008b; Lauder and Di Santo 2015). Range 
expansions and poleward shifts assume that (1) spe-
cies are able to migrate and (2) species are able to 
find new suitable habitats. Some elasmobranchs show 
strong philopatry or are geographically restricted, 
making it hard for them to colonize new habi-
tat (Dulvy et  al. 2008b; Lauder and Di Santo 2015; 
Kneebone et  al. 2020). In particular, skate popula-
tions show high philopatry, and even when a nearby 
population is locally extirpated, they are unlikely to 
expand their range and repopulate that area (Dulvy 
et al. 2014). In some cases long distance relocations 
might be hindered in deep waters as benthic elas-
mobranchs cannot stop and rest on the bottom of the 
oceans to recover (Dulvy et al. 2008a, b). In fact, high 
hydrostatic pressure increases the concentration of 
trimethylamine-N-oxide (TMAO) in the body fluids 
of elasmobranchs (Priede et  al. 2006; Laxson et  al. 
2011; Yancey et al. 2014, 2018). TMAO is a naturally 
occurring osmolyte that stabilizes the three-dimen-
sional structure of proteins (Yancey et  al. 1982). In 

deep waters high pressure causes muscle TMAO to 
increase and urea to decrease. TMAO amplifies the 
inward osmotic gradient which becomes fatal as the 
kidneys are unable to compensate (Aronson et  al. 
2007). On the other hand, TMAO production plateaus 
at depths of around 3000  m, hence elasmobranchs 
may be unable to accumulate sufficient TMAO to 
counteract pressure (Laxson et al. 2011).

Future warming is forecasted to be most pro-
nounced in the Southern ocean (Intergovernmental 
Panel on Climate Change 2015) and elevated tem-
peratures are expected to facilitate the introduction 
and establishment of new species (Aronson et  al. 
2007). Thus, a significant latitudinal shifting of elas-
mobranchs is expected to be towards shallow waters 
in Antarctica in the southern hemisphere (Aronson 
et al. 2007). The continental shelf around Antarctica 
is deeper than 3000 m and when migrating to Antarc-
tica, elasmobranchs must swim continuously to cross 
the deep ocean (Aronson et al. 2007). Fast swimming 
pelagic sharks have the ability to swim continuously 
and have a high probability of crossing the depths 
to reach Antarctica, while benthic sharks, skates and 
most rays lack the capacity to swim continuously 
thus facing physiological challenges while crossing 
the continental shelf (Aronson et al. 2007). Addition-
ally, benthic elasmobranchs tend to have small body 
size (Carrier et  al. 2004) which corresponds to high 
cost of transport regardless of swimming metabolic 
rates, thus limiting large scale migrations (Lauder and 
Di Santo 2015). With ocean acidification increasing 
skeletal mineralization, we might expect that benthic 
elasmobranchs will develop an even more sluggish 
behavior, making their migrations paths less likely to 
occur. Therefore, we suggest that morphological and 
physiological traits that contribute to swimming abil-
ity may be considered important factors when model-
ling future large-scale shifts in elasmobranch fishes.

Identifying tolerant elasmobranch physiotypes 
under climate change

Elasmobranch fishes have survived all five major 
mass extinction events that have occurred over their 
evolution (last 400 million years), making them 
one of the most resilient marine groups (Rosa et  al. 
2017a). However, because they have relatively long 
generation time and many of them are currently 
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overfished, they are considered one of the most 
threatened marine groups (Field et  al. 2009; Chin 
et  al. 2010). Current rates of change in temperature 
and pH are much faster than those they experienced 
during previous climatic shifts (Hoffmann and Sgrò 
2011). Specifically, the rate of warming and acidifi-
cation combined with other stressors (e.g., habitat 
destruction, prey availability, exploitation) may ren-
der their management and protection difficult (Baum 
et al. 2003; Dulvy et al. 2008a, 2014; Dawson et al. 
2011; Birkmanis et  al. 2020). As it is unlikely that 
elasmobranchs may be able to adapt to rapid changes 
in the environment through evolutionary processes, 
many species may adjust to these synergistic changes 
through alterations in behavior (such as shifts in habi-
tat utilization) or distribution. To be able to forecast 
future outcomes and strategize on different measures 
to implement to manage wild populations, it is impor-
tant to identify key traits that impact swimming per-
formance under climate change scenarios (Fig. 1).

Physiotypes that are able to swim fast have an 
advantage when shifting their geographic distribu-
tion and exploiting new thermal gradients and areas. 
These are for example heterothermic (lamnid) sharks 
that can usually swim faster and for longer peri-
ods than poikilothermic species (Carrier et al. 2004; 
Sims 2010). Morphological features such as tapered 
fins and streamlined bodies also favor swimming 

efficiency, and are characteristic of elasmobranch 
physiotypes that already show wide geographic distri-
bution (Lauder and Di Santo 2015). Warmer habitat 
physiotypes from lower latitudes may be more likely 
to fare well in future climate change, as they may 
experience a smaller increase in temperature com-
pared to species at higher latitudes (Perry et al. 2005; 
Gervais et al. 2018), however hypoxic events in these 
areas could reduce performance (Parsons and Carl-
son 1998; Carlson and Parsons 2001; Di Santo et al. 
2016; Crear et al. 2019; Esbaugh et al. 2021). Species 
experiencing fluctuating environments across their 
geographic range might be better able to adjust to cli-
mate change (Hoffmann and Sgrò 2011; Seibel et al. 
2012; Di Santo 2016; Johnson and Hofmann 2020). 
Such species can either exhibit locally adapted popu-
lations that respond differently to stressors (species 
with reduced dispersal capacity) or global distribution 
(high swimming and dispersal capacity) (Dulvy et al. 
2008b; Field et  al. 2009; Booth et  al. 2011; Lauder 
and Di Santo 2015). Physiotypes with widespread 
distribution usually have a higher tolerance to novel 
environments because they have already experienced 
a variety of climate and habitat conditions within 
their home range (Field et  al. 2009). Furthermore, a 
wide geographic range usually correlates positively 
with body size (Dulvy et  al. 2014). Bigger elasmo-
branchs exhibit lower costs of transport compared to 

Fig. 1  Four major conse-
quences of ocean warming 
and acidification on traits 
that affect swimming per-
formance in elasmobranchs
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smaller ones (Lauder and Di Santo 2015), and have 
the potential to effectively respond to environmental 
stressors through changes in distribution. Yet, physi-
otypes characterized by smaller body size could have 
an advantage, even if not during migrations. In fact, 
smaller fishes tend to be more tolerant to changes in 
temperature compared to bigger ones (Di Santo and 
Lobel 2017; McKenzie et al. 2020), and are less sen-
sitive to warming and ocean acidification (Wittmann 
and Pörtner 2013; Di Santo and Lobel 2016; Di Santo 
2016). Smaller and benthic elasmobranchs typically 
show low metabolic rates during swimming, and 
are known to exploit the variation in their habitats 
by shuttling across thermal gradients (Wallman and 
Bennett 2006; Di Santo and Bennett 2011a; Papasta-
matiou et al. 2015; Flowers et al. 2020). Small scale 
movements may be important for the survival of many 
benthic species that could not otherwise relocate to 
more suitable areas. For instance, elasmobranchs that 
live in thermally variable environments may continue 
to select specific temperatures to enhance different 
physiological processes, for example, higher tem-
peratures to enhance high energy bursts to hunt, and 
low temperatures to save energy during digestion or 
recovery from exercise (Hight and Lowe 2007; Meese 
and Lowe 2019; Silva-Garay and Lowe 2021). This 
behavior is already observed in several benthic sharks 
and rays and may become even more widespread 
with ocean warming. Ocean acidification is likely to 
increase the energy costs during swimming, and to 
prolong recovery times after bursts, but is also likely 
to increase body size and favor underwater walking 
by increasing mineralization of pelvic fins which is 
observed in several benthic rays and sharks already 
(Bilecenoglu and Ekstrom 2013; Jung et al. 2018; Di 
Santo 2019; Wheeler et al. 2020, 2021).

Conclusions and future directions

Locomotor efficiency is a major trait determin-
ing the capacity of elasmobranchs to fare well in 
climate change, however very few studies have 
examined how it will be affected by ocean warm-
ing, acidification and other related stressors like 
hypoxia. Ocean warming and acidification exert 

both single, synergistic and antagonistic effects on 
elasmobranch locomotion efficiency by affecting 
skeletal mineralization, increasing metabolic rates 
during swimming, and prolonging the time it takes 
to recover from exercise, and to locate food (Rosa 
et  al. 2014, 2017b; Pistevos et  al. 2015; Di Santo 
2016; Gervais et  al. 2021). These morphological 
and physiological impairments, in combination with 
hypoxia, pollution, fishing and habitat destruction, 
may act to reduce elasmobranch survival (Parsons 
and Carlson 1998; Carlson and Parsons 2001; Field 
et  al. 2009; Dulvy et  al. 2014; Crear et  al. 2019; 
Bouyoucos et  al. 2019). However, there is dearth 
of empirical studies on the capacity of elasmo-
branchs to swim efficiently under simulated future 
ocean conditions. We suggest that future studies 
quantify the single and combined effect of ocean 
acidification, warming and other stressors such as 
hypoxia on multiple locomotor behaviors within the 
same species of sharks and rays to identify poten-
tial trade-offs (Fig.  2). In particular, more studies 
are needed on the effect of these stressors on burst 
and steady swimming energetics and biomechanics 
(including metabolic rates, maximum and optimal 
swimming speeds, endurance, tail beat frequency, 
head and tail amplitude, waves speed and length, 
body angle and curvature) and ontogenetic studies 
to understand long term consequences on morphol-
ogy (body size, skeletal mineralization, fin flexibil-
ity and shape) and swimming mechanics. Moreover, 
it is just as important to quantify intraspecific vari-
ation in responses to stressors (Feder et  al. 1987; 
Pough 1988). Intraspecific variation in performance 
can clarify which traits make individuals more or 
less efficient during swimming under different envi-
ronmental conditions. Finally, more studies should 
be conducted to understand the effect of climate 
change on swimming in larger elasmobranchs. 
These species are typically more difficult to study 
in laboratory settings but technological advances 
in field equipment paired with laboratory testing 
(Whitney et al. 2007; Lawson et al. 2019; Papasta-
matiou et al. 2021) can allow us to understand how 
sharks and rays may exploit the variation in their 
environment to save energy during locomotion. 
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