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Abstract4

This paper develops a tree-topological local mesh refinement (TLMR) method on Cartesian5

grids for the simulation of bio-inspired flow with multiple moving objects. The method solves the6

time-dependent incompressible flow using a fractional-step method and discretizes the Navier-7

Stokes equation using a finite-difference formulation with an immersed boundary method to re-8

solve the complex boundaries. The discretized equations are solved iteratively on the refinement9

mesh with ghost-cell communication between blocks, therefore enabling parallel computation on10

a distributed memory system. For better accuracy and faster convergence, the momentum equa-11

tion is solved on non-overlapped refinement meshes, while the Poisson equation is solved on12

overlapped meshes, recursively from the coarsest block to the finest ones, or parallelly using the13

Schwarz method if child blocks of the same tree node are connected. Convergence studies show14

that the algorithm is second-order accurate in space for both velocity and pressure, and the de-15

veloped mesh refinement technique is benchmarked and demonstrated by several canonical flow16

problems. The TLMR enables a fast solution to an incompressible flow problem with complex17

boundaries or multiple moving objects. Various bio-inspired flows of multiple moving objects18

show that the solver can save over 80% computational time, proportional to the grid reduction19

when refinement is applied.20

Keywords: local mesh refinement, tree topology, bio-inspired flow, immersed boundary21

method, distributed memory22

1. Introduction23

Bio-inspired flow dynamics studies the external flow stirred by insects, birds, or fishes, or24

flow inside organs of humans or animals. It has a broad range of applications in biomimetic25

engineering and human health studies [1–4]. Different from canonical flow simulation problems,26

bio-inspired flow features unsteady flow restrained by complex boundaries, such as flexible or27
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moving surfaces. Despite the successes of moving unstructured meshes used in a finite volume28

or a finite element method [5–7], Cartesian grids with immersed boundary (IB) methods [8–29

10] are one of the most popular approaches for studying cases with complex boundaries. The30

IB method solves the Navier-Stokes equations on a fixed Cartesian grid and models the solid31

boundaries by a field of forces to enforce the boundary conditions and therefore enables an32

effective solution for moving boundary problems. The success of the IB method has attracted a33

great deal of research interest [11–16]. The sharp-interface immersed boundary method using a34

direct forcing approach achieved great success in various bio-inspired flows with complex and35

moving boundaries [17–20]. Despite its enormous success, the IB method poses challenges to36

computing resources because of the large number of meshes required for a smooth representation37

of complex boundaries. This issue can be even more demanding in flow with multiple moving38

objects (MMO), such as a flock of flying birds or schooling fish, which is often characterized by39

a large computational domain with highly non-homogeneous grid resolutions. Hence, the design40

of a fast and efficient technique for such problems is an urgent need.41

The local mesh refinement (LMR), or the local adaptive mesh refinement (AMR) tech-42

niques [21, 22], which locally refine the mesh without significantly increasing the total number43

of meshes, may mitigate the demands for computing resources and provides an attractive solu-44

tion. The subdivision and the addition of new elements usually change the data structure. Hence,45

the unstructured meshes [23, 24] or the more advantaged data structures, such as the tree-based46

multi-layer grids [25], are commonly used in various AMR techniques. However, the IB method47

may prefer simple structured Cartesian grids, like the multi-layer block-structured grids used by48

Berger et al. [26] for hyperbolic systems. In their approach, a sequence of blocks containing finer49

Cartesian grids will be automatically generated or removed by evaluating a user-specified error50

function until the solution is sufficiently resolved. This technique achieved substantial success on51

various two-dimensional (2D) and three-dimensional (3D) hyperbolic systems or compressible52

flows [27–30].53

The block-based AMR techniques have also been integrated with IB methods to solve the54

incompressible flow problem and some popular patch-based or octree-based (for 3D problem)55

refinement techniques have emerged [31–35]. Unlike compressible flow problems, which can be56

numerically advanced in time, for incompressible flows the elliptic Poisson equation needs to be57

solved to enforce a divergence-free velocity field. One concern is computational efficiency, such58

as computational time or memory, of the Poisson equation under such mesh refinement tech-59

niques, especially when the refinement contains too many small refinement blocks and parallel60

computation on a distributed memory is required. Moreover, the AMR technique often allocates61

lots of computational resources to resolve the far wake, while the bio-inspired flow simulation62

usually focuses on near-wake-region properties, such as drag and lift forces or the interactions63

between fluid and structures. The allocation and deallocation of refinement meshes may incur an64

additional overshoot in computational load in the simulations. Peng et. al [36] demonstrated that65

with a few nested blocks containing Cartesian grids they can improve the discretization accuracy66

around the solid boundaries. Their approach is based on the finite volume approach and was67

applied only to 2D flow problems with stationary boundaries. Deng and Dong [37] presented68

an octree-like local mesh refinement technique for bio-inspired flow simulation with enhanced69

computation ability due to a reduced number of meshes. Recently, Zhang et. al [38] developed70

a block-based mesh refinement technique using a finite-difference formulation with IB method71

to simulate human airway flow with a moving uvula. Direct application of the aforementioned72

nested Cartesian grids to 3D flows with MMO is difficult and the computation of the Poisson73

equations on multiple refinement blocks on a distributed memory system is yet to be addressed.74
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This paper develops a TLMR with IB method embedded (TLMR-IBM) flow solver for bio-75

inspired flow with MMO. This method recursively refines local mesh without significantly in-76

creasing the number of meshes and can be applied to highly non-homogeneous flow with MMO.77

More importantly, an effective iterative procedure is developed on these TLMR meshes for a78

fast solution of the discretized momentum and continuity equations. With the proposed TLMR79

method, an existing Cartesian-grid-based flow solver can be readily adapted and parallelized.80

This paper is organized as follows. § 2 introduces the proposed mesh refinement technique and81

an iterative procedure to solve the discretized Navier-Stokes equation is also presented for such82

meshes. § 3 presents some benchmark examples and demonstrates the accuracy and efficiency83

of the proposed mesh refinement technique. Analyses of other complicated flows past MMO are84

also demonstrated to illustrate the application of this approach.85

2. Numerical methods86

This section introduces the meshes for TLMR and the procedures to integrate the incom-87

pressible Navier-Stokes equations on such meshes.88

2.1. The meshes for TLMR89

The meshes for TLMR can be introduced using the example in Fig. 1(a), where a school of90

fish is swimming. To simulate flow around such a group, a dense mesh is required around each91

swimmer. Instead of having a uniform mesh for the computational domain, we can gradually92

refine the mesh with refined blocks. For the problem illustrated in Fig. 1(a), one block with the93

background Cartesian grids covers the whole computational domain. Then another block covers94

the school with an additional refinement block around each fish for better resolution. To better95

resolve the body-body/fin interaction between different sizes of fishes, one more refinement block96

can be placed around the smaller fish. If the wake is of interest, an additional refinement block97

is placed in the far wake region.

Block 1 Block 2

Block 3

Block 4

Block 6Block 5

Level 0

Level 1

Level 2

Level 3

Block 0

Level 0

Level 1

Level 2

Level 3

(Base Cartesian Grid)

Grid size 

(a) (b)

(c)

B 0

B 1 B 2

B 3 B 4 B 5

B 6

Figure 1: Schematic of TLMR for flow with multiple moving objects: (a) a bio-inspired flow problem with local mesh
refinement and (b) a tree topology for the refinement blocks, with solid lines denoting interlayer connections and dash
lines for intralayer connections.

98

The above mesh refinement has nested the fine blocks inside a coarse one. This approach99

balances the need for desired resolution around solid boundaries and the simplicity of commu-100

nication between refinement blocks. The parent and the child hierarchy of refinement blocks101
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resembles a tree topology, which can be employed to describe the connectivity between these102

blocks. In this description, as referenced in Fig. 1(b), each refinement block is a node of the103

tree and its refinement block is its child node. We may further require that each node can have104

only one parent block, meaning that a refinement block is located inside a coarse one. This105

restriction may degrade slightly the flexibility of adding refinement blocks but can greatly sim-106

plify information communication between the blocks because of the simplified connection. The107

child blocks under the same parental node may also be connected, such as block 1 (B1)-B2 or108

B3-B4 in Fig. 1(b). An additional dashed line is added for such intralayer-connected blocks.109

The boundary-induced mesh refinement for bio-inspired flow simulations often adopts a fixed110

hierarchical mesh refinement and does not need to be changed during the simulation. These pre-111

determined meshes can avoid the overhead of dynamic allocation and deallocation of grids in a112

standard AMR technique.113

Meshes in the refined block are obtained by subdividing that of the coarse block in each114

direction by a factor of two. Hence, a 3D cell will have eight subcells or four for a 2D case.115

By adjusting the resolution of background meshes and the total levels of refinements, the local116

refinement approach can provide the necessary grid resolution without significantly increasing117

the overall number of meshes.118

2.2. Fractional-step method for incompressible Navier-Stokes equations with immersed bound-119

aries120

The bio-inspired flow is usually described by the unsteady incompressible Navier-Stokes
equations

∂ui

∂t
+
∂
(
uiu j

)
∂x j

= −
∂p
∂xi
+

1
Re

∂2ui

∂x jx j
, (1)

∂ui

∂xi
= 0, , (2)

where i, j = 1, 2, or 3, and u1, u2, and u3 are the dimensionless velocity in x-, y-, and z-direction121

respectively, and p is the dimensionless pressure of the fluid. Re is the Reynolds number.122

The incompressible Navier-Stokes equations are discretized using a cell-centered, collocated123

arrangement of the primary variables u1, u2, u3, and p. The coupled system of velocity and124

pressure is integrated in time using the fractional-step method [39, 40], where it first computes125

an approximation solution u∗ to the momentum Eqn. (1) by126

u∗i − un
i

∆t
=

1
2

(3Nn
i − Nn−1

i ) +
1

2Re
(
δ2

δx2 +
δ2

δy2 +
δ2

δz2 )(un
i + u∗i ), (3)

using a second-order Adams-Bashforth scheme for the convective terms and an implicit Crank-127

Nicolson scheme for the viscous term to eliminate the viscous stability constraint. Nonlinear128

convective terms are represented as Ni = −δ(uiu j)/δx j. δ/δx j represents a second-order central129

difference for the first derivative. The divergence-free restriction is applied through the projection130

un+1
i − u∗i
∆t

= −
δϕn+1

δxi
, (4)

where ϕ follows the Poisson equation131

(
δ2

δx2 +
δ2

δy2 +
δ2

δz2 )ϕn+1 =
1
∆t
δu∗i
δxi

, (5)
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where δ2/δx2
i represents the second-order central difference of the Laplacian operator in the x, y,132

and z-direction and δϕn+1/δxi is the Einstein notation for δu∗1/δx+ δu∗2/δy+ δu
∗
3/δz. The pressure133

can be recovered from pn = ϕn with a truncation error of O(∆t/Re) [39].134

To resolve the immersed boundary, the sharp-interface IB method developed by Mittal et135

al. [19] is adopted and the implementation has been tested extensively in the previous works [41–136

43].137

2.3. An efficient iterative solver on the TLMR meshes138

2.3.1. A parallel computation design on the TLMR meshes139

Though the present TLMR does not require parallel computation, it is nevertheless most140

efficient to do so. The primary reason is that the mesh of the refined blocks often has a large size,141

especially for 3D applications, and can be stored and computed on a distributed memory system.142

Therefore, we parallelize the computation by sending the blocks to distributed memories and143

communicating between them using message passing interface (MPI). As each computing unit144

preserves the structured Cartesian grids, the proposed mesh refinement technique can be readily145

adapted from an established Cartesian grid flow solver.146

The blocks of a large number of meshes can lead to coarse-grained parallelism. Besides, the147

computation on each Cartesian grid can be effectively multithreaded. The threading enables extra148

freedom to control load balance among a distributed memory system by setting a thread number149

for each block so the number of meshes per thread approximately equals for all blocks. Hence,150

the present TLMR method can benefit from hybrid parallelism to take full power of modern151

computer systems connected by multiple nodes with a multi-core processor. In the following152

discussion, we present our method for a distributed memory system.153

2.3.2. Discretization on the TLMR meshes154

The discretized momentum (3) and the Poisson equation (5) on the Cartesian grids can be155

reformulated to the following form156

aWψW + aEψE + aCψC + aNψN + aSψS = RHS , (6)

where ψ(·) is the discretized value for velocity (u, v and w) or pressure (p) and a(·) is the cor-157

responding coefficient in the discretized equations. To simplify the discussion, we describe the158

descritized equations on a 2D problem as shown in Fig. 2(a), although the methodology is by no159

means restricted to a 2D problem.160

For the 2D example, a 5-point stencil is used for the discretization of each cell, and similarly,161

a 7-point stencil is required for a 3D case. As mentioned earlier, data of different blocks are stored162

on distributed memories. The discretization scheme requires a ghost cell when performed at the163

boundary of each block. Similar to a domain decomposition approach in parallel computing, a164

layer of ghost cells are arranged at the block interface, as illustrated in Fig. 2(b). A block may165

have an outer ghost cell layer if it resides in a coarse block and multiple inner ghost cell layers if166

it contains refined blocks.167

2.3.3. An iterative solver and block communications on the TLMR meshes168

The discretized equation (6) can be solved using an iterative algorithm so a convergent so-169

lution can be achieved on all blocks. Some iterative methods such as Jacobi or successive over-170

relaxation (SOR) can be adopted, or one can use the popular Krylov subspace methods such171

as generalized minimal residual method (GMRES) [44] and the biconjugate gradient stabilized172
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N

E

S

W
C

5-point stencil for regular cell

block interface

Ghost cell layer

Figure 2: Illustration of discretization stencil and the ghost cell arrangement for a refined block: (a) a 5-point discretiza-
tion stencil for a fluid cell and (b) the arrangement of ghost cell layers (shaded) around the block interfaces.

method (BiCGSTAB) [45]. In this study, an incomplete LU factorization method, modified173

strongly implicit procedure (MSIP) [46–48], is adopted for its simple implementation and fast174

convergence. To further improve the computation speed on a multi-core computer system, the175

MSIP algorithm is threaded.176

To proceed with the iterative procedures on the block refinement meshes, ghost cell values177

need to be synchronized among the distributed memories. To communicate between blocks, the178

two types of block connections, as shown in the tree topology in Fig. 1(b), need to be considered.179

The first is the interlayer connection of two blocks between two different refinement levels, and180

the second is the intralayer connection of two blocks in the same refinement level.181

Interlayer communication with multidimensional Lagrange interpolation182

Interlayer communication synchronizes ghost cell values between the coarse and fine blocks.183

Data are stored at cell center, which is not coincident between coarse and fine blocks. Synchro-184

nization using the naive cell-averaged values potentially degrades the overall accuracy of the185

proposed mesh refinement technique. In the current approach, a multidimensional Lagrange in-186

terpolation is adopted to interpolate the cell-centered values to the right position in an interlayer187

communication188

ψ(x, y, z) =
N2∑

k=N1

M2∑
j=M1

L2∑
i=L1

ψi jkri(x)s j(y)tk(z), (7)

where ψ(x, y, z) is the value to be interpolated at cooridinate (x, y, z) and ψi jk are the values of
ψ at the Cartesian cells

{
[xL1 , · · · , xL2 ] × [yM1 , · · · , yM2 ] × [zN1 , · · · , zN2 ]

}
. The one-dimensional

Lagrange polynomials ri(x), s j(y), tk(z) are defined at the x, y, and z directions respectively as

ri(x) =
∏

i′,i, L1≤i′≤L2

x − xi′

xi − xi′
, s j(y) =

∏
j′, j,M1≤ j′≤M2

y − y j′

y j − y j′
, tk(z) =

∏
k′,k,N1≤k′≤N2

z − zi′

zk − zk′
,

with i ∈ [L1, L2], j ∈ [M1,M2] and k ∈ [N1,N2]. Fig. 3 illustrates synchronization of ghost189

cell values on a 2D mesh, which contains both inter- and intralayer connections, as shown in190

Figure 3(a). A 3×3 interpolation stencil, marked by blue square in Fig. 3(b), is used to interpolate191
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the coarse cell values to the ghost cell in the fine block. Meanwhile, a 4 × 4 stencil is used to192

interpolate from the fine to the coarse. Likewise, for a 3D simulation, the interpolation stencils193

are 3×3×3 and 4×4×4 respectively. This interpolation strategy guarantees at least second-order194

accuracy in space and is crucial for the spatial accuracy of the mesh refinement technique.

Figure 3: Schematic of information synchronization between refinement blocks: (a) a three-block mesh refinement
example, (b) the interlayer and intralayer communication for ghost cells (shaded) at the block interface. For the 2D
example, the interlayer communication requires to interpolate from coarse to fine cells (or vice versa), through the
surrounding cells using a 3 × 3 ( or 4 × 4) stencil, marked by the blue squares, to the target cells, marked by the red
squares (color online), and (b1, b2) two strategies to synchronize the ghost cell values among two intraconnected blocks:
(b1) synchronization across one interface and (b2) synchronization across two interfaces.

195

Intralayer communication using the Schwarz method for fast convergence196

The intralayer-connected blocks create another situation that may influence the performance197

of an iterative solver and perplex the communication on the TLMR meshes. As an intralayer-198

connected block has finer cells and more accurate values than the coarse parent block and no199

interpolation is needed, it is more reasonable to synchronize the ghost-cell value from this fine200

block rather than the coarser parental block. In general, two strategies can be adopted in this201

scenario.202

A straightforward strategy to communicate the ghost cell values is inspired by the domain203

decomposition approach in which the information is exchanged through the ghost cells around204

an interface between two blocks, as illustrated by Fig. 3(b1). In this approach, one block is cut205
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at the overlap region. Another potential option results from realizing that the overlapped region,206

as shown in Fig. 3(b2), is internal to the connected region of the two blocks, and the value in207

the internal region does not affect the solution. Therefore, if the boundary value of both blocks208

can be updated during the iteration, the iterative algorithm may achieve faster convergence. The209

primitive idea has been explored by Schwarz [49] and proved to be convergent, and the poten-210

tial benefits of this method for parallel computing have been realized by Lions [50]. Hence, the211

current approach synchronizes the ghost-cell values for each block from the intralayer-connected212

block using the Schwarz method as shown in Fig. 3(b), and then the iterative algorithm is per-213

formed on the whole rectangular mesh.214

2.4. Efficient Poisson solver on the TLMR meshes215

As mentioned earlier, the Poisson equation often converges slowly and takes a great deal of216

computation time when solved iteratively, such as by the iterative algorithms mentioned before.217

For fast convergence, a multigrid method [51, 52] is often adopted when solving this equation.218

The main idea of multigrid to accelerate the convergence of an iterative method is to improve219

the fine grid solution by a global correction obtained on a coarse grid. This is particularly useful220

for systems like the Poisson equations that exhibit different rates of convergence for short- and221

long-wavelength components, as suggested by the Fourier analysis [53].222

A multigrid algorithm on block refinement meshes on a shared memory system is straight-223

forward since the multigrid algorithm can perform the prolongation and restriction operation224

between coarse and fine meshes effortlessly on the multi-level refinement meshes [31]. How-225

ever, care is needed on the present local refinement meshes as they are stored on distributed226

memories and the prolongation and restriction operation invoke communicating a large volume227

of data between blocks [54] and may reduce overall computation speed. Besides, as pointed out228

by Liu and Hu [34], the algebraic multigrid method performed on the multilayer meshes, con-229

structed from either patch-based or octree-based [55, 56], often lacks scalability for large-scale230

parallel computation. In the following sections, we describe strategies for a fast Poisson solver231

on such meshes involving the interlayer- and intralayer-connected blocks.232

2.4.1. A recursive Poisson solver on the TLMR meshes233

For hierarchical coarse and fine meshes, the Poisson equation is solved recursively from the234

coarse block to the fine ones. That is, the Poisson equation is first solved on the coarsest block235

and then the finer blocks, where the latter proceeds as its boundary values are interpolated from236

the former. This solution process can be illustrated using the two-block problem in Fig. 4. The237

Poisson equation is first solved on block B0 on all fluid cells with the given Neumann boundary238

conditions on the far-field and the solid boundaries. Then block B1 is solved with its boundary239

value ϕb, synchronized from the block B0, and the Neumann boundary condition at the solid240

boundaries. For computation efficiency, the boundary value ϕb is synchronized at every iteration241

instead of waiting for the convergence of its parent block. This recursive Poisson solver is similar242

to the level-by-level solution proposed by Guillet and Teyssier [57], who have tested and verified243

its efficiency on an octree-based AMR approach.244

Restricting the velocity divergence ∇ · u∗ from a fine block to a coarse block245

To solve the Poisson equation on each block, ∇ · u∗, the right-hand side of the discretized246

Poisson equation (5), needs to be synchronized from fine blocks to coarse ones since the inter-247

mediate velocity u∗ is not stored in the refined region. Restricting ∇ · u∗ from fine cells to the248
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Figure 4: Schematic of solving the Poisson equation recursively from a coarse block to a fine block, of which the
boundary values on the ghost cells are interpolated from the coarse block.

coarse ones on an uniform Cartesian mesh yields249

(∇ · u∗)l
=

1
2N

∑
(∇ · u∗)l+1 , (8)

where N is the dimension of the problem and l indicates the level of refinement, with level l + 1
mesh subdivides that of level l, as illustrated n Fig. 5. This may be illustrated with reference to
the 3D example in Fig. 5(a). The divergence component δu∗/δx of cell (i, j, k) at the refinement
level l can be derived from the surface velocity u∗i±1/2, j,k by

(
δu∗

δx

)l

i jk
=

u∗
i+ 1

2 , j,k
− u∗

i− 1
2 , j,k

∆x
=

1
4
∑2k

k′=2k−1
∑2 j

j′=2 j−1 u∗
2i+ 1

2 , j
′,k′
− 1

4
∑2k

k′=2k−1
∑2 j

j′=2 j−1 u∗
2i− 3

2 , j
′,k′

∆x

=
1
8

∑2k
k′=2k−1

∑2 j
j′=2 j−1

∑2i
i′=2i−1

(
u∗

i′+ 1
2 , j
′,k′
− u∗

i′− 1
2 , j
′,k′

)
1
2∆x

=
1
8

2k∑
k′=2k−1

2 j∑
j′=2 j−1

2i∑
i′=2i−1

(
δu∗

δx

)l+1

i′ j′k′
.

where cells (i′, j′, k′) ∈ [2i− 1, 2i]× [2 j− 1, 2 j]× [2k − 1, 2k] at level l+ 1 are the subcells of the250

cell (i, j, k). Similar relations hold for δv∗/δy and δw∗/δz, therefore yield Eqn. (8).251

When solid boundaries cut through the subcells, ∇ · u∗ restricts to coarse cells in a manner252

to preserve the cell average as indicated by Eqn. (8), with solid subcells assigned value 0. For253

instance, in the example in Fig. 5(b), cell (i + 1, j) will contain the average value of three fluid254

cells and one solid cell. If the coarse cell is solid, like cell (i + 2, j), the restricted ∇ · u∗ from255

fine subcells will be evenly redistributed to the surrounding fluid cells to keep the conservation256

of ∇ · u∗.257

2.4.2. Parallel Schwarz method for intralayer-connected refinement blocks258

When intralayer-connected blocks appear, our experience shows that the Schwarz method in-259

troduced in § 2.3.3 almost leverages the full power of a multigrid algorithm and converges much260
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(a)

(b)

Figure 5: Restriction of the velocity divergence ∇ · u∗ from fine cells to a coarse cell: (a) restriction of regular 3D cells
and (b) restriction of 2D cells near a solid boundary.

faster than a domain decomposition approach. The two-interfacial exchanging approach allows261

much efficient information exchange across the overlapped refinement blocks during the multi-262

grid sweeps. Furthermore, the Schwarz method allows computing on each rectangular block263

without cutting out the overlapped region, and therefore favors a multigrid algorithm on struc-264

tured mesh without the need for an algebraic multigrid method, where the latter involves extra265

storage and can be difficult to implement.266

After the design of the recursive Poisson solver and the usage of the parallel Schwarz method,267

we summarize the procedures to efficiently solve the discretized Poisson equation on the TLMR268

meshes as follows:269

Procedure 1 Procedures to solve Poisson equation on the TLMR meshes
1. Initialize the Pressure by guessed ϕ0.
2. Compute the divergence rate ∇ · u∗ by Eqn. (5) on each block with values in the refined

regions synchronized from fine blocks by Eqn. (8).
3. Enforce boundary conditions around the computational domain.
4. Continue following iterations.

(a) For each refined block, synchronize values ghost cell layer from the coarse parental
block. If an intralayer connection exists, replace values of the ghost cell layer of the
connected region from the connected block.

(b) Enforce boundary conditions around the immersed solid via an IBM method.
(c) For each refinement block, solve the Poisson equation on the Cartesian grids using a

multigrid method and accelerate the computation with multithreading if needed.
(d) Check the convergence of Eqn. (5): if yes, exit iteration; otherwise, return to step 4a.
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3. Results and discussion270

In this section, we assess the accuracy and efficiency of the present TLMR method and271

demonstrate its application to bio-inspired flow simulations, especially the simulation of groups272

of fish swimming together. Firstly, a convergence study is performed using two prototypical flow273

problems to verify its spatial and temporal discretization accuracy. Secondly, two canonical flow274

problems with stationary or moving boundaries are simulated and compared to the references.275

Finally, we simulate flow with highly complex, non-canonical geometries to showcase the ca-276

pabilities of the solver for complex bio-inspired flow. The computations were performed on a277

supercomputer that has up to 575 nodes with over 20476 cores. For performance evaluation,278

nodes used for computation contain dual Intel Xeon E5-2680v3 twelve-core processors with a279

CPU frequency of 2.5GHz.280

3.1. Convergence study of the numerical solver on the TLMR meshes281

3.1.1. The Taylor-Green Vortex problem282

To demonstrate the spatial and temporal discretization accuracy of our algorithm on block
refinement meshes, we first consider the Taylor Green vortex flow [58], which is an unsteady
flow with decaying or growing vorticity on a periodic domain. It usually starts with an initial
condition

u = A cos ax sin by sin cz,

v = B sin ax cos by sin cz,

w = C sin ax sin by cos cz,

where Aa + Bb + Cc = 0 because of the continuity equation. Exact solutions exist on a 2D283

domain. Within a 2π × 2π periodic domain, the solution can be written as284

u = cos x sin yF(t),
v = − sin x cos yF(t),

p = −
ρ

4
(cos 2x + cos 2y)F2(t),

(9)

where A = −B = a = b = 1 and F(t) = e−2νt is a decaying function. ν is the kinematic285

viscosity of the fluid and is related to the Reynolds number by ν = UL/Re, where U and L being286

the reference velocity and length. For simplicity, the Reynolds number for the investigation is287

chosen 50.288

We first demonstrate that the multi-dimensional Lagrange interpolation is critical for the
spatial accuracy. We discretize the 2π × 2π domain and a refined π × π region at the center
by a 32 × 32 mesh. Fig. 6(a) and Fig. 6(b) show the contour plots of streamwise velocity (u)
and pressure (p). Both the velocity and pressure match the exact solution well if the interlayer
communication employs the multi-dimensional Lagrange interpolation, as shown in Fig. 3. We
also tried a simple bilinear interpolation, which yields much bigger error in pressure, as shown
in Fig. 6(b). Even worse, the error ∥eu∥2, BL shows that the velocity is only first-order accurate in
space with the bilinear interpolation. The normalized global error for velocity is defined by

∥eu∥2 =
∥u − ue∥2

∥ue∥2
=

√√
∫
Ω
∥u − ue∥

2dA/A∫
Ω
∥ue∥

2dA/A

,
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Figure 6: Convergence study of the TLMR-IBM flow solver using the 2D Taylor-Green vortex flow problem: (a) and
(b) contour plot of the x-component velocity u and the pressure p using bilinear interpolation or multi-dimensional
Lagrange interpolation for the interlayer communication, (c) error when using the bilinear interpolation (BL) and the
multi-dimensional Lagrange interpolation (ML) for the interlayer communication, (d) grid convergence study of the
pressure on both coarse block (CB) and fine block (FB), and (e) temporal convergence study for the velocity u and
pressure p.

and a normalized local error is defined by

∥eu∥∞ =
∥u − ue∥∞

∥ue∥2
=

max |u − ue|√∫
Ω
∥ue∥

2dA/A
,
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where ue are the exact solution (9), Ω is the flow domain, and A is the area of the domain.289

Error for the pressure can be similarly defined. We compute the errors on different grids 32× 32,290

64×64, 128×128 and 256×256, so the finest grid resolutions are (π/32)×(π/32), (π/64)×(π/64),291

(π/128) × (π/128) and (π/256) × (π/256), respectively. Figure 6(c) shows that using the multi-292

dimensional Lagrangian interpolation for ghost cell values, the solver can reach a global second-293

order accuracy for both velocity and pressure. For the pressure, as shown in Fig. 6(d), a global294

and local second-order accuracy in space for both the find block (FB) and the coarse block (CB)295

is observed via the error ∥ep∥2/∞,FB/CB. We further repeat the the simulation on the 64 × 64 with296

different time steps ∆t, ∆t/2, ∆t/4, ∆t/8, where ∆t = 0.00633, and the error in Fig. 6(e) shows297

that the temporal accuracy of solver is between the first- and second-order.298

3.1.2. Flow past a fixed boundary299
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Figure 7: Flow past stationary cylinder problem for the convergence study of the TLMR-IBM flow solver when solid
boundary immersed: (a) contour plot the x-component velocity u on a 256×256 uniform mesh at t = 0.2D/U∞, (b) error
of velocity |u − ue | at t = 0.2D/U∞, where ue is the reference values computed on a uniform 2048 × 2048 mesh, and (c)
and (d) the spatial and temporal convergence of the TLMR-IBM solver respectively.

To investigate the accuracy of the developed algorithm with solid boundaries immersed, we300
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consider the flow past a fixed circular cylinder. The Reynolds number Re = U∞D/ν is chosen301

100, where D is the diameter of the cylinder. For this test, we adopt a uniform Cartesian mesh302

on a 4D × 4D computational domain, and a 2D × 2D refined block at the center. For reference,303

we use the numerical results from the in-house numerical solver [19] on a high-resolution grid304

(2048 × 2048) as the reference value, since the solver is well benchmarked. We choose a time305

step 0.0001D/U∞ and three sets of meshes, 128 × 128, 256 × 256 and 512 × 512 for both coarse306

and fine blocks. The results are compared with the reference solution at the 2000th step.307

Figure 7(a) shows the streamwise velocity on a 256×256 mesh. The error of the velocity field,308

as shown in Fig. 7(b), indicates that the maximum error appears around the solid boundary. Mesh309

refinement around a solid body therefore can improve the accuracy at the boundary. The error310

∥eu∥2 and ∥ep∥2 in Fig 7(c) shows that velocity u and pressure p both achieve a global second-311

order accuracy in space. The error study in Fig 7(d) shows that the solver is approximately312

first-order accurate in time for both velocity and pressure. This is consistent to the conclusion313

that the truncation error of p = ϕ is O(∆t/Re) [39], and the error may be less significant when314

Reynolds number is high.315

3.2. Benchmark cases for simple flows316

In this section, we further benchmark the developed TLMR-IBM flow solver using two clas-317

sical flows, with either stationary or moving boundaries, and compare the results with the refer-318

ences.319

3.2.1. Two-dimensional flow past a fixed circular cylinder320

In many bio-inspired flow problems, the fluid is usually blocked by the body and the circula-321

tion around the body may create two rolls of vortices after the body. This phenomenon is similar322

to the classical problem of flow past a fixed cylinder, which is studied here to mimic the flow323

past the body of various swimmers. For simplicity, we only consider 2D cases with Reynolds324

numbers in a range of 102 ∼ 104, as it is noticed that the Reynolds numbers for bio-inspired flow325

usually reside in the range of 102 ∼ 106 for insects, birds, and marine animals [59–61]. And326

among them, the flow is dominated by the moving boundaries and the shear layer instabilities327

typically when Re < 105.328

As shown in Fig. 8(a), the size of the computational domain is 38D × 18D, the same as329

the study of Singh and Mittal [62]. D = 1 is the diameter of the cylinder. Dirichlet boundary330

condition is set at the left, top, and bottom boundaries, while Neumann condition is applied at the331

outlet. The domain is discretized using the stretched Cartesian grids around a uniform region of332

size 12D × 8D with the resolution of 0.016 × 0.016 around the cylinder, which is located (10, 9).333

The Cartesian grids provide the background meshes for the refined blocks. To simulate the flow334

under various Reynolds numbers, up to 4 layers of refinement meshes are adopted, as illustrated335

in Fig. 8(b). To simulate the flow under different Reynolds numbers, the number of blocks used336

and the corresponding resolution are listed in Table 1.337

The computed drag forces on the cylinder are shown in Fig. 8(c). At low Reynolds num-338

bers, 100 and 200, the drag forces are close to the experimental results of Wieselsberger (taken339

from [62]) and Tritton [63]. Since flow past a cylinder develops 3D structures at high Reynolds340

numbers, the 2D numerical simulation does not fit well with experimental results when the341

Reynolds number is higher than 200. Therefore, for a higher Reynolds number, it is reason-342

able to compare with other 2D numerical studies. For instance, in the range of 100 ∼ 1000, our343

numerical results are close to Henderson [64], who computed the unsteady flow using a spec-344

tral element method. The drag force also matches that obtained by Beaudan and Moin [65],345
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Table 1: Refinement blocks for 2D cylinder simulation

Block Block size Grid resolution
(∆ = ∆x = ∆y)

Number of
meshes (×106) Reynolds number

0 38D × 18D 0.016 0.39 100, 200
1 10D × 4D 0.008 0.98 -
2 5D × 2D 0.004 1.64 1000, 2000, 3900
3 3D × 1.5D 0.002 2.82 5000, 7000
4 1.05D × 1.05D 0.001 4.15 10000

who performed a numerical study for the 2D flow at Re = 3900. For higher Reynolds number346

(103 ≤ Re ≤ 104) our results match that of Singh and Mittal [62], who numerical studied the347

2D shear layer instability using a finite element approach with deliberately fine layers of meshes348

surrounding the cylinder to resolve flow in the boundary layer.349

The shedding period of the primary vortex (measured by the reciprocal of Strouhal number)350

is plotted in Fig. 8(d). At low Reynolds (100 ∼ 200), the numerical results match the exper-351

imental data by Kovasznay and Roshko (extracted from [66]). At Re = 3900, the computed352

frequency matches those computed by Beaudan and Moin [65]. For higher Reynolds numbers,353

the numerically captured shedding period gently decreases with increased Re.354

The instantaneous vortices after the cylinder provide visual information about the primary355

and shear layer instabilities. At a low Reynolds number (100 ∼ 200), there are only two orga-356

nized vortices after the cylinder. After Re > 1000, small shear layer instability develops but does357

not influence the far wake. Further increasing Re, shear layer instability becomes significant at358

the top and bottom of the cylinder. At Re = 104, the primary vortices are significantly reduced359

and the shear layer vortices start to dominate the near wake region.360

Besides the aforementioned coincidence of statistical comparison with the literature, some
properties in the near wake region can illustrate the value of the TLMR method in resolving flow
inside the boundary layer. Figure 9(a) shows the base suction pressure coefficient Cpb which is
given by

Cpb =
p̄pb

1
2ρU2

∞

,

where p̄pb is the time-averaged pressure at the rear of the cylinder (θ = 180◦ as referenced in361

Fig. 10(a)). At a low Reynolds number, Re = 100 to be specific, the computed base pressure is362

coincident with the experimental results of Williamson and Roshko [67]. When Re = 200, a 3D363

flow structure yielded from secondary flow instability will cause a sudden drop of pressure [68].364

Without modeling the 3D structures, our simulation only matches other 2D simulations. For365

instance, when Re = 3900, our base pressure matches that of Baudan and Moin’s results. In a366

wide range of Re > 2000, our simulations are similar to that of Singh and Mittal, but with a slight367

difference. This might be because our finest Cartesian mesh is still relatively coarse compared368

to that of Singh and Mittal, who adopted a boundary layer thickness around 10−5 compared to369

10−3 in the current study. We further compare the pressure distribution along the surface of370

the cylinder to that of Singh and Mittal for the verification of the refinement technique. Three371

different Reynolds numbers, 100, 2000, and 10000, are compared here. Our simulations show372

good coincidence when θ < 80◦, and slight discrepancies in the separation region.373

Figure 10 plots the velocity profiles of the laminar boundary layer at the Reynolds number of
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Figure 9: Benchmark of 2D flow past a stationary cylinder: (a) base suction pressure coefficient −Cpb and (b) averaged
pressure distribution over the cylinder. ’*’ in (a) indicates experimental data.

104. The velocity is plotted in the local cooridinate, where the shear velocity is tangential to the
wall and varies along the wall normal direction, as shown in the top-right corner of Fig. 10(a).
The shear velocity and wall norm distance is normalized by

u+ =
u
uτ
, y+ =

yuτ
µ
,

where uτ is the shear velocity at the wall computed by uτ =
√
τw/ρ and τw is the wall shear stress374

computed by τw = µ∂u/∂y|y=0. In the current simulation, the y+ of the cells is around 4, providing375

sufficient resolution for the viscous boundary layer. The flow separates from the cylinder after376

θ ≥ 90◦, and therefore is not discussed here.377

In the laminar boundary layer that attaches to the cylinder surface, the velocity profile along378

the wall-normal direction at different locations of θ is plotted in Fig. 10(a). The laminar velocity379

profile deviates from curve u+ = y+, which is valid for the viscous sublayer in a turbulent bound-380

ary layer. For comparison, we include the boundary profiles derived by Hsu (see appendix F in381

Ref. [69]), who solved the boundary-layer equations using the wall condition and the potential382

flow profile as the outer boundary condition for the compressible flow. Both approaches yield383

similar results when the distance in the y-direction is small (y+ < 10). Since the potential flow384

has a larger velocity than the real viscous flow, the deviation becomes large when both θ and y385

become large.386

On the other hand, along the wall-tangential direction, due to the curvature of the cylinder,387

the shear velocity can be higher than the income flow and often reaches a maximum velocity388

umax at a height of ymax. For the inviscid flow, the development of umax with respect to different θ389

is given by a simple sinusoid relation390

u(θ) = U0 sin(θ), (10)

where U0 is the incoming flow velocity. In the real flow, the velocity is retarded by the viscosity
and can not reach such a high value. As the boundary layer develops along with the circular
cylinder, as shown in Fig. 10(a), the thickness ymax and the maximum velocity umax increase and
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the curve u+ = y+ approximately intercepts the maximum velocity from the velocity profiles
at different angles of θ. The thickness ymax and maximum velocity umax are further plotted in
Fig. 10(b). When the boundary layer attaches to the surface of the cylinder, second or third-
order polynomials fit well the data. Applying the boundary condition that the thickness ymax is
symmetric and umax antisymmetric at θ = 0, the data are fitted by the lines

√
Re ymax = 1.47 × 10−4θ2 + 1.38,

umax = −1.77 × 10−6θ3 + 0.0326θ,

where the lines are plotted aside the data points using dashed lines. From the fitted curves, the391

thinnest thickness is around 0.0138, and the maximum velocity in the boundary layer is around392

1.7 and is below the potential flow. Our numerical results reflect this trend well. Furthermore,393

our numerical results are also close to the experimental results of Hiemenz at a Reynolds number394

of 1.9×104 (extracted from Ref. [70], Chapter 8.3.3). In the region of favorable pressure gradient395

(θ < 70◦), the fitted curves of u/U0 for numerical and experimental data are close despite slightly396

different Reynolds numbers. In the adverse pressure gradient region, the experiments of Hiemenz397

clearly show that the potential velocity is difficult to recover at a higher Reynolds number. Our398

numerical simulation at Re = 104 experiences less velocity loss compared to that of Hiemenz, as399

shown in Fig. 10(b).
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Figure 10: The velocity profile in the shear layer of a 2D cylinder at Re = 104: (a) the shear velocity profile and (b) the
maximum velocity umax and thickness ymax at different location of θ.

400

3.2.2. Three-dimensional flow past a pitching panel401

Another important bio-inspired flow is the flow stirred by a thin revolving panel, like a fish402

fin or an insect wing. Inspired by this, we study a model problem with a revolving trapezoidal403

panel. For a fair comparison, the panel geometry and kinematics are the same as the experiments404

of King et al. [71].405

The geometry of the panel is shown in Fig. 11(a), and the associated parameters are listed406

in Table 2. c is the cord length of the panel and is chosen as the reference length. All dimen-407

sions are scaled respectively. The panel pitches around the leading edge following a sine wave408

at a frequency of f = 1 Hz and a peak-to-peak amplitude of 15◦. The Strouhal number, St, and409
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Reynolds number, Re, are defined as St = f A/U and Re = Uc/ν, respectively, where A denotes410

the peak-to-peak trailing edge amplitude, U is the incoming flow velocity, and ν indicates the411

kinematic viscosity of the fluid. Three Strouhal numbers, 0.27, 0.37, and 0.46, from the experi-412

ments, are chosen for the verification of the TLMR-IBM solver. According to the experiments,413

the variation of the Strouhal number is accomplished by changing the incoming flow velocity,414

and the corresponding Reynolds numbers are Re = 10200, 7400, and 5800, respectively.

Table 2: Summary of the non-dimensional geometry parameters in the simulation

Chord length, c Span, b Thickness, δ Sweep angle Aspect ratio, AR
1.0 2.51 0.016 45◦ 4.17

415

Figure 11: Schematic of panel simulation: (a) panel geometry and (b) setup of the 3D simulation.

The configuration for the numerical simulation, including the block refinement meshes and416

the boundary conditions are displayed in Fig. 11(b). The domain size is 16.0 × 14.0 × 14.0 with417

total grid nodes around 5.68 million (176 × 144 × 224). To resolve the flow structures at a high418

Reynolds number, two layers of refined meshes are employed, so the resolution is 0.0052 around419

the thin plate. The total number of meshes is around 15.4 million. In contrast, the grid number420

can easily go up to 1 billion (15.4M × 8 × 8) without the TLMR method. The details of the421

refinement blocks are summarized in Table 3. A constant inflow velocity boundary condition422

is assigned at the left-hand boundary, and an outflow boundary is imposed at the right-hand423

boundary. The zero-gradient boundary condition is set at all other lateral boundaries. For the424

pressure condition, a homogeneous Neumann boundary is applied at all boundaries.425

Figure 12 presents the vortex wake structures under three Strouhal number at two different426

time instance, t = 0 and t = 0.25T . Figure 12(a1-f1) are the experimentally observed wakes by427

King et al. [71] (courtesy of King et al.) using isosurfaces of Q-criterion [72]. Figure 12(a2-f2)428

shows the numerically observed wakes, which are visualized at a value of 1% of Qmax, and Q429

isosurfaces are colored by the value of the spanwise vorticity ωz to be consistent with the ex-430
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Table 3: Summary of refinement blocks for a 3D pitching panel simulation

Block Block size Grid resolution (∆ =
∆x = ∆y = ∆z)

Number of meshes
(×106)

0 16.0 × 14.0 × 14.0 0.0208 5.68
1 2.8 × 0.8 × 3.6 0.0104 4.13
2 1.18 × 0.4 × 2.8 0.0052 5.63

Figure 12: Snapshots of wake structures of the pitching panel: (a1, a2, d1, d2) St = 0.27, (b1, b2, e1, e2) St = 0.37 and
(c1, c2, f1, f2) St = 0.46 at t = 0 (a1-c1, a2-c2) and t = 0.25 (d1-f1, d2-f2) respectively. The figures (a1-f1) are from
experiments results [71] (reprinted with permission from King et al.), and (a2-f2) are from current simulations.

periments. The plot shows that the numerical simulation captures the main flow features of the431

unsteady flow observed in the experiments. For example, the spanwise vortices are shed from432

the trailing edge of the panel alternatively and form the reverse Kármán vortex street. The vor-433

tex street shrinks in the spanwise direction and gradually becomes disorganized as it convects434
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downstream. At the same time, tip vortices are generated at the ends of the panel, connect-435

ing the neighboring spanwise vortices. Furthermore, the numerical simulations correctly reveal436

the dominant role of St in the development of wake structures. With increased St, the wakes437

are compressed heavier in the spanwise direction and the onset of wake breakdown moves up-438

stream. For instance, at St = 0.27, the Q isosurface exhibits between z/b ≈ ±0.45 at x/c ≈ 0.5,439

and the wake breaks at x/c ≈ 1.75 near the midspan plane (Fig. 12(a2)); while at a higher St440

of 0.46, the Q isosurface extents from z/b ≈ ±0.375 at x/c ≈ 0.5. In addition, the vortex tube at441

x/c ≈ 0.75 become twisted and weak, and the wake breakdown begins at x/c ≈ 1.2, where the ωz442

is around zero near the midspan plane, as shown in Fig. 12(c2). The well-captured wake struc-443

tures prove that the block-based mesh refinement technique could provide sufficient resolution444

to three-dimensional high Reynolds number problems. In addition, we present the time variation445

of the force coefficients for the three pitching panels in Fig. 13 for future reference. The force446

coefficients are defined as CT = −FX/(0.5ρU2S ) and CY = FY/(0.5ρU2S ), where S is the area447

of the panel. For all cases, two peaks characterize the thrust force (CT ) in one cycle, while the448

lateral force (CY ) oscillates with one peak per stroke.

Figure 13: Time history of force coefficients for the pitching panel: (a) coefficient of thrust CT and (b) coefficient of
lateral force CY

449

3.3. The versatility and efficiency of the TLMR-IBM solver for bio-inspired flow simulations450

In the following section, we will demonstrate how the TLMR-IBM solver performs when451

multiple objects are immersed in the flow, like the flow around and within schools of fish. Both452

2D and 3D cases with moving boundaries will be presented in the following studies.453

3.3.1. Simulation of the two-dimensional fish school swimming problems454

When fishes swim in a school, strong nonlinear body-body interactions can improve their455

thrust and propulsive efficiency as revealed in a recent numerical study by Pan and Dong [73].456

Such a school swimming case is an excellent test case to demonstrate the efficiency of the present457

TLMR method.458

Figure 14(a) shows a diamond-shaped fish school formation, where L is the body length and459

U∞ is the swimming speed. The S is the streamwise distance between the leading fish 1 and the460
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trailing fish 4. The lateral spacing D is the spacing between the centers of fish 2 and fish 3. The461

Reynolds number for the simulation is 1000 based on the incoming flow velocity and body length.462

The undulating motion of fish is usually modeled by a traveling wave equation [73]. Two typical463

diamond-shaped schools, sparse (CASE I) and dense (CASE II), are illustrated in Fig. 14(a) and464

Fig. 14(b). In the sparse school, the lateral distance D is 1L, and 0.5L is in the dense school.465

The streamwise spacing S is kept constant 0.4L. The computation domain is of size 30L × 20L.466

With a two-layer mesh refinement, the resolution around the fishes is 0.0022×0.0022. For easier467

illustration, a window of 4.5L × 3L around the school is plotted and the mesh is coarsened by 4468

times in each direction.
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Figure 14: Numerical study of sparse and dense schools: (a) and (b) schematic of a coarse (CASE I) and a dense (CASE
II) diamond-shaped fish school with definitions of quantities describing its spatial arrangement in (a), mesh are coarsen
in each direction by 4 times for easier illustration, (c) the 3S vortex streets in the sparse diamond school, (d) two 2P and
one 2S vortex streets in the narrow diamond school, and (e, f) the streamwise force Cx of fish 1 in one undulating motion
cycle for the sparse and dense schools respectively.

469

The simulations produce similar vortex patterns as the reference [73]. In the sparse school,470

a 2S vortex street is shed from each row of fishes, as shown by Fig. 14(c). In the dense school,471

as shown in Fig. 14(d), the top and bottom rows of fishes shed the 2P vortex streets while the472

middle row sheds 2S vortex streets. The streamwise force CX of fish 1 in the school is plotted473

in Fig 14(e) and 14(f). For comparison, the same school swimming problems are simulated in a474

single block of Cartesian grids, which are obtained by subdividing the base block in Fig. 14(a)475
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in each direction by a factor of 4. As shown by the plots, the forces computed using the present476

mesh refinement technique are identical to the reference cases, which are denoted as CASE III.477

Computational efficiency of the 2D fish school problems478

To compare computational efficiency, Table 4 lists the runtime information of the above two479

simulations and a simulation of the dense school on a single Cartesian mesh as CASE III for480

reference. All three simulations have the same resolution of 0.0022 around the solid boundaries.481

The TLMR reduces the number of meshes of the 2D examples dramatically from 6.3 million482

(CASE III) to 1.0 ∼ 1.2 million (CASE I and CASE II). The reduction of the number of meshes483

significantly reduces the time in solving the discretized equations. The iterative solver for the484

momentum equation on the refinement mesh is 11 ∼ 12 times faster than the reference one. The485

speedup of the iterative Poisson solver can be 10 times, or 6 times if there are blocks intralayer-486

connected. This is because the iterations often increase when the intralayer connection appears,487

from an average of 20 steps to 39 in current examples.

Table 4: Runtime information of the 2D fish school swimming, averaged over 100 time steps.

CASE I CASE II
CASE III

(Global Refinement)
Total gird size (×106) 1.0 1.2 6.3
Iterations of momemtum 10 10 12
Iterations of Poission 20 39 16
Time of synchronization (sec.) 0.01 0.02 -
Time of momentum solver (sec.) 0.89 0.95 10.80a

Time of Poisson solver (sec.) 2.84 5.20 29.16a

Total time of solving eqns. (sec.) 3.74 6.17 39.96a

Mesh speedup, SoM(n) 6.3 5.3 1
Speedup, S(n) 10.7 6.5 1
Parallel efficiency, η(n) 0.28 0.20 1

aTime of simulating the sparse school problem

488

To better describe the computation efficiency, we define the speedup of computation as489

S(n) =
Time of computation on a single Cartesian block with given grid resolution

Time of computation on refinement meshes
, (11)

where n is the number of processors, or refinement blocks, used in the mesh refinement. Mean-490

while, as the computation is proportional to the total number of meshes, the speedup of compu-491

tation due to the saving of meshes is defined as492

SoM(n) =
Number of meshes in a single Cartesian block with given grid resolution

Number of meshes in refinement meshes
. (12)

The saving of meshes, or memory, can be computed from the mesh speedup by 1 − 1/SoM(n).493

The parallel computation efficiency, η(n), of the present mesh refinement technique computed on494

a distributed memory system is then assessed by495

η(n) =
S(n)

SoM(n) · n
. (13)
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The speedup of current examples with two layers refinement can reach as high as 10.7, in which496

SoM contributes 6.3. The parallel computation efficiency with three blocks, or three processors,497

reaches 0.28. Meanwhile, the saving in computational memory, or the number of meshes, can498

reach 84% for the 2D examples. For CASE I and CASE II, the speedup is mainly contributed by499

the saving of mesh by a percentage of 60% ∼ 80%.500

As intralayer communication efficiency can affect the iteration time, we compare the two501

communication strategies proposed in § 2.3.3. We repeat CASE II using the proposed one-502

interface and two-interface strategy (the default approach in earlier simulations) for intralayer503

communication and plot the results in Fig. 15, which also includes the single block case (CASE504

III) for reference. Fig. 15(a) shows the maximum residual during the iteration. The multigrid505

algorithm is most efficient on a single Cartesian mesh, CASE III, and the Poisson equation con-506

verges in about 20 steps. The two-interface strategy of updating the outer ghost cells and iter-507

atively solving the whole rectangular block slightly increases the iterative steps. However, the508

one-interface strategy needs much more steps and even thousands to converge, neutralizing the509

efficiency of the multigrid algorithm. Meanwhile, two strategies yield almost identical pressure510

as shown in Fig. 15(b). The pressure distributions are also similar to the CASE III on a single511

block except for the far-field area, which is not sufficiently resolved in the current simulation due512

to a lack of interest there.
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Figure 15: Comparison of the iterative Poisson solver using two communication strategies: (a) the residual during the
iterations and (b) the contour plot of the pressure. In figure (b), dash lines are for the CASE II using the two-interface
communication strategy, and dash-double-dot lines are for CASE II using the one-interface communication strategy, and
color contour plots the results on the global refinement meshes for reference.

513

3.3.2. Simulation of the three-dimensional single trout swimming514

The speedup of the TLMR method can be more prominent in a 3D simulation. To demon-515

strate the efficiency for a 3D flow with moving boundaries, we present the simulation of a rainbow516

trout (Oncorhynchus mykiss). The trout geometry and kinematics are constructed from videos517

taken from an orthotropic high-speed camera system constituting a lateral, ventral, and posterior518

view, using the same reconstruction method adopted by Liu et al. [74, 75]. The image snap-519

shots and the reconstruction are illustrated in Fig. 16. The Reynolds number in this numerical520

investigation is 4800, and the Strouhal number is about 0.46.521

The configuration for the simulation is shown in Fig. 17(a), and the local refinement mesh is522

shown in Fig. 17(b). The domain size is 10L × 6L × 6L, where L is the body length of a trout. A523
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Figure 16: Morphological and kinematical modeling of juvenile rainbow trout (Oncorhynchus mykiss) during steady
swimming. (a-b) High-speed camera images of live rainbow trout swimming overlapped with computational model from
lateral and ventral views, (c) Side-by-side comparison of live trout and computational mode from posterior view (d-
e) Reconstructed swimming kinematics of computational model during left-to-right (L-to-R) and right-to-left (R-to-L)
strokes, respectively.

block cutting through the body and encompassing all the fins is added as a third layer for better524

resolution of the flow around the undulating fins. The finest resolution is 1.75 × 10−3L around525

the posterior part of the trout. The boundary conditions are set the same as in the pitching panel526

cases.527

The wake topology in one swimming cycle is plotted in Fig. 17(c) and Fig. 17(d). Among528

them, Fig. 17(c1) and (c2) show that strong coherent vortex structures are generated on the529

leading edge of the fins including the dorsal fin, pelvic fin, anal fin, and caudal fin. These530

leading-edge vortexes contribute to the majority of thrust production. Besides, in each half period531

of the tail-beat cycle, a vortex ring is shed from the trailing edge of the caudal fin and connects532

with neighboring vortex rings. The TLMR method recursively refines meshes around the trout.533

Therefore, we observe smooth flow velocity from the contour plot in the cut slices around the534

trout body, as shown in Fig. 17(c2) and (d2). Particularly, we plotted the boundary velocity535

profile in Fig. 17(c3) and (d3).536

Computational efficiency of the trout swimming537

To further demonstrate the efficiency of the TLMR method, the runtime information of four538

cases is listed and compared in Table 5. CASE I computes on a single Cartesian grid without539

mesh refinement. The grid resolution is 0.007 and the total number of meshes is about 32.8 mil-540

lion. Case II achieves the same resolution using the one-layer refinement, and the corresponding541

number of mesh is 7.8 million. CASE III further refines the mesh by placing one additional re-542

finement block on top of CASE II, so the grid resolution reaches 0.0035 and the number of mesh543

is 10.4 million. CASE IV, which is illustrated in Fig. 17(b), further refines CASE III to achieve544

a resolution of 0.00175 around the undulating tail and caudal fin. The total number of meshes is545

21.5 million. The 3D cases are computed using four OpenMP threads for each refinement block,546

except that the fourth block in CASE IV uses eight threads.547
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Figure 17: Simulation of trout swimming: (a) setup of the 3D simulation, (b) local mesh refinement around solid bound-
ary, (c1-c3) and (d1-d3) wake after trout, velocity contour on 2D slices, and velocity profile near the boundary when
t = 0T or 3/4T respectively, where T is the flapping period.
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Table 5: Runtime information of the 3D trout simulation, averaged over 100 time steps.

CASE I
Unrefined

CASE II
One layer

CASE III
Two layers

CASE IV
Three layers

Grid resolution (∆ = ∆x = ∆y = ∆z) 0.007 0.007 0.0035 0.00175
Total gird size (×106) 32.8 7.8 11.6 21.5
Total cores used 4 8 12 20
Iterations of momentum 9 8 10 16
Iterations of Poisson 24 15 22 42
Time of synchronization (sec.) - 0.30 0.63 1.32
Time of momentum solver (sec.) 34.31 4.53 9.91 20.61
Time of Poisson solver (sec.) 379.39 19.15 41.39 127.63
Total time of solving eqns. (sec.) 413.70 23.98 51.93 149.52
Mesh speedup, SoM(n) 1 4.2 22.6 97.7
Speedup, S(n) 1 17.3 63.8 177.1
Parallel efficiency, η(n) 1 2.06 0.94 0.45

To compare the computational efficiency, CASE I computed on a single Cartesian grid is548

chosen as the reference. The speedup S(n) of one layer refinement can reach 17.3, whereas549

mesh-saving speedup, SoM(n), is around 4.2. The speedup increases significantly when more550

layers of refinement are applied. For instance, it reaches 63.8 and 177.1 when applied with two551

and three-layer mesh refinement, respectively, whereas the mesh-saving speedup reaches up to552

97.7, accounting for 55% of the total speedup. At the same time, the saving of computational553

memory for the 3D problem is greater than 76% and reaches a remarkable 99% when three-layer554

mesh refinement is applied. In the above computation, the reference cases for CASE III and555

CASE IV are derived from CASE I, whereas the mesh is assumed to be refined from that of556

CASE I in each direction by a factor of 2 or 4 respectively, and the computation time is assumed557

to scale linearly with the total number of meshes.558

3.3.3. Simulation of the three-dimensional trout school swimming559

In this section, we present results from a simulation devised to examine hydrodynamics of560

fish school swimming with a significant level of complexity. The results presented here are pri-561

marily intended to show the complexity of the flow and the ability of the solver to handle a case562

that includes multiple moving objects with strong interactions. The fish model and flow condi-563

tions in § 3.3.2 are adopted here to study body-body and body-wake interactions in a diamond-564

shaped fish school with a streamwise distance of 0.4L and lateral spacing of 0.6L. The flow565

simulation is conducted on a 12L× 6L× 8L computational domain size. A Cartesian grid of size566

320 × 96 × 224 and two wrapped TLMR blocks are used around each fish which provides high567

resolution meshes as shown in Fig. 18(a), where the finest mesh is 3.35 × 10−3L. In the specific568

case presented here, the Reynolds number based on the fish body length is 5430 and the Strouhal569

number is 0.41. Boundary conditions for the problem are set as shown in Fig. 17(a). The flow570

simulation uses 24 cores (4 cores per 6 refinement blocks), 96GB of memory, and a total of571

576 CPU hours, or 24 hours of wall clock time, for computing one tail-beat cycle. Figure 18(b)572

demonstrates the flow structures, which are visualized by the isosurfaces of the Q-criterion, at573

the end of the 4th tail-beat cycle of the fish school, where the isosurface in grey color represents574

Q = 1.6 and the one in blue color is Q = 4.0. At this stage, the dominant vortex features in the575
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Figure 18: (a) Top view of the computational meshes around four fishes, and (b) Q isosurfaces at the end of the 4th
tail-beat of a swimming fish school.

flow are the vortex rings and inter-connected wake vortices created during the stroke. Similar to576

Fig. 17, each fish sheds two sets of vortex rings downstream. Due to the existence of neighboring577

fishes, these vortex rings interact with the neighboring fish bodies and merge with other vortices,578

as shown in the circled regions in Fig. 18(b). Furthermore, due to its special position in the fish579

school, fish 4 interacts with the vortices shed from fish 1 as well as the half-stroke rings shed580

from fish 2 and fish 3, respectively. These vortices merge with the vortices produced by the tail581

of fish 4, then form the strong inter-connected wake vortices. This school formation is being582

further refined with changing of distance and tail-beat phase difference between all pairs of fish583

within the school and will then be used for a detailed investigation of fish school hydrodynamics.584

4. Conclusions585

In this paper, we have developed an efficient IB method using the TLMR for the problems of586

bio-inspired flows induced by the motion of single or multiple objects that use a Cartesian grid587

finite difference scheme for the incompressible Navier-Stokes equations. This mesh refinement588

approach recursively refines regions of interest by subdividing the blocks of Cartesian grids and589

hence enables hybrid parallelism on a distributed memory system connected by multiple com-590

puting nodes with multi-core processors. A key contribution of this paper is that it introduces a591

new iterative approach to solve the discretized equations on the refinement meshes for faster con-592

vergence while preserving numerical accuracy. That is, the momentum equation is discretized593

on all grids but the refined ones and solved using an iterative algorithm. Meanwhile, the Poisson594

equation is discretized on all grids and solved recursively from the coarsest block of meshes to595

the finest ones, of which the boundary values are interpolated and synchronized from the former.596

Additionally, the discretized equations are solved parallelly using the Schwarz method when the597

refinement blocks of a coarse one are connected.598

Several two- and three-dimensional canonical flows are simulated and the computed results599

are compared with available data sets to establish the accuracy and fidelity of the new TLMR-600

IBM flow solver. Numerical examples without or with immersed solid boundaries, such as the601

Taylor-Green vortex flow and the flow past a circular cylinder, demonstrate that the new solver602

28

Electronic copy available at: https://ssrn.com/abstract=4169528



achieves second-order spatial accuracy for both the velocity and pressure. Simulations are also603

conducted for flows with a stationary or moving object at different Reynolds numbers ranging604

from O(102) up to O(104), and we show that the current solver accurately predicts the drag605

forces, shedding frequencies, surface pressure and boundary velocity for the canonical flow past606

stationary cylinder problem and the evolution of the vorticity field that matched well with the 3D607

PIV data of flows past a pitching plate. The computation of 2D fish school flows shows a good608

versatility of the TLMR method by wrapping finer mesh layers around multiple objects and a609

great deal of saving of the computational memory and time up to 80% by the usage of TLMR610

method. Finally, we demonstrate the ability of the solver to handle extremely complicated three-611

dimensional moving objects by showing selected results from the body- / fin-fin interactions612

in trout swimming and a diamond-shaped trout school swimming. These cases show that our613

solver not only obtains the time-resolved flow field near the fish body and in the far wakes614

but also permits the use of a much smaller number of meshes that are over 80% less than a615

global refinement. Consequently, the current solver saves significant computational time for the616

3D problem in addition to the parallel computation, and the saving can be larger when more617

wrapping boxes of refinement meshes instead of a global refinement are used.618
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