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Synopsis Ecological physiologists and biomechanists have investigated swimming performance in a diversity of fishes; how-
ever, the connection between form, function, and energetics of locomotion has been rarely evaluated in the same system and
under climate change scenarios. In this perspective, I argue that working within the framework of “EcoPhysioMechanics,” i.e.
integrating energetics and biomechanics tools, to measure locomotor performance and behavior under different abiotic factors,
improves our understanding of the mechanisms, limits and costs of movement. To demonstrate how EcoPhysioMechanics can
be applied to locomotor studies, I outline how linking biomechanics and physiology allows us to understand how fishes may
modulate their movement to achieve high speeds or reduce the costs of locomotion. I also discuss how the framework is neces-
sary to quantify swimming capacity under climate change scenarios. Finally, I discuss current dearth of integrative studies and
gaps in empirical datasets that are necessary to understand fish swimming under changing environments.

Introduction
Over the past decades physiologists have suggested that
investigating shifts in locomotor performance can be
used to elucidate major mechanisms of organismal re-
sponses to climate change (Somero 2010; Lauder and
Di Santo 2015; Lawson et al. 2019; Vilmar and Di
Santo 2022). While linking climate data and ecophys-
iology has resulted in the establishment of the pro-
lific field of “conservation physiology” (Wikelski and
Cooke 2006; Cooke et al. 2013), biomechanics has yet
to become integrated in many physiological studies, and
it is rarely applied to work looking at locomotor per-
formance under climate change scenarios (Helmuth et
al. 2005; Denny and Helmuth 2009; Denny and Gay-
lord 2010; Carrington et al. 2015; Currier et al. 2021;
Vilmar and Di Santo 2022). Successful integration has
been slow mostly because physiologists and biomech-
anists generally focus on different aspects of locomo-
tor performance (Breder 1926; Fry 1947; Johnson and

Bennett 1995; Di Santo et al. 2021), and there is a
lack of unifying frameworks to study mechanics and
energetics of movement under a new interdisciplinary
umbrella of “EcoPhysioMechanics.” Ecological physiol-
ogists typically quantify the effect of abiotic factors on
performance such as, for example, oxygen consump-
tion during locomotion or digestion (Fry 1947; Brett
1967; Roche et al. 2013; Bale et al. 2014; Deutsch et
al. 2015), while biomechanists focus on the relationship
between form and function to understand how organ-
isms move under different physical conditions (Breder
1926; Lindsey 1978; Shadwick and Lauder 2006; Lauder
2015; Di Santo et al. 2021). Yet, the integration of these
two well-established fields, ecophysiology and biome-
chanics, presents the opportunity to link movement and
energetics of locomotion to understand plasticity and
selection under environmental change.

Here, I argue that integrating energetics and biome-
chanics studies to quantify locomotor performance
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2 V. Di Santo

Fig. 1 EcoPhysioMechanics framework. The consequences of environmental factors such as temperature and carbon dioxide (CO2) on
individual and collective fish locomotion can be studied by integrating measurements from biomechanics (e.g., kinematics), physiology (e.g.,
performance curves, active metabolic rates), and morphology (e.g., density of skeleton). By combining ecophysiology and biomechanics, we
can elucidate mechanisms underlying shifts in locomotor performance.

under different abiotic conditions, including climate-
related stressors, is key to understand organismal re-
sponses under stable, fluctuating, and changing envi-
ronments, and the consequences of variation in swim-
ming kinematics on physiological performance (Fig. 1).
To illustrate how EcoPhysioMechanics can be applied to
locomotor studies, I focus on a few cases that provide a
thread across morphology, eco-physiology, and biome-
chanics in fishes. First, I outline how linking biome-
chanics and physiology of whole organisms can be used
successfully to understand how fishes may modulate
their kinematic behavior to achieve high speeds or to
lower the costs of locomotion. Second, I discuss how
this particular framework can be helpful to quantify
swimming capacity in species under climate change sce-
narios. Finally, I conclude with a discussion of gaps in
empirical datasets that are necessary to understand lo-
comotion, and how the lack of integrative studies can
hinder the progress of biomechanics, eco-physiology,
and conservation biology.

Integrating biomechanics and physiology
to understand fish locomotor
performance
Locomotor performance is a key contributor to the evo-
lutionary success of fishes (Breder 1926; Hunter 1998).
As a consequence, fish locomotion has been a ma-
jor topic of investigation for functional morphologists,
physiologists, and engineers (Breder 1926; Brett 1967;
Lighthill 1971; Daniel 1984; Sfakiotakis et al. 1999; Bale
et al. 2014; Lauder 2015; Di Santo et al. 2021; Akanyeti
et al. 2022). Fishes display an extraordinary variety of
body shapes and locomotor behaviors that they use
to escape predators, attack prey, maneuver in complex
habitats, perform large scale migrations, school, mate,
communicate, and explore the substrate (Johnson and
Bennett 1995; Wilga and Lauder 2002; Shubin et al.
2006; Clark 2016; Fox et al. 2018; Jung et al. 2018;

Flowers et al. 2020). However, the dearth of integrative
studies examining the energetic consequences and the
limits of locomotor performance slows down our capac-
ity to understand and forecast shifts in movement range
and capacity, especially under environmental change
(Helmuth et al. 2005; Vilmar and Di Santo 2022).

The important consideration with respect to unify-
ing biomechanical and physiological studies in light
of climate change is that the consequences of shifts
in locomotor behavior resonate at the level of physi-
ological processes, and as a result, changes in the en-
vironment can limit or expand the locomotor perfor-
mance envelope (Johnson and Bennett 1995; Whitlow
et al. 2019; Currier et al. 2021). Furthermore, individ-
ual locomotor decisions can alter collective behaviors
(Couzin et al. 2005) and, as a consequence, popula-
tion and ecosystem-level dynamics may change because
schooling and shoaling are fundamental for the survival
of forage fishes (Shaw 1962; Emmett and Sampson 2007;
Saadat et al. 2021). Here, I analyze two sets of locomo-
tor behaviors that show that the integration of biome-
chanics and physiology is important to understand the
mechanisms that limit performance in solitary swim-
mers and schooling fishes.

Hydrodynamics models have predicted that the re-
lationship between speed and metabolic rates should
follow a U- or J-shape (Webb 1994; Sepulveda et al.
2003; Di Santo and Kenaley 2016; Di Santo et al. 2017b).
In fact, energetic costs are expected to increase at low
speeds as postural costs and induced drag become sig-
nificantly elevated and at high speeds as body drag
increases with speed (Vogel 2020). Therefore, there
should be some intermediate speeds at which swim-
ming is relatively economical, i.e. the optimal speed or
Uopt (Fig. 2). However, many studies in the past decades
showed a linear or exponential metabolic–speed curve
(some examples: Webb 1994; Lauder and Di Santo 2015)
when data at low speeds were either eliminated or pos-
sibly ignored (Sepulveda et al. 2003, 2007). Many data
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Fish EcoPhysioMechanics under climate change 3

Fig. 2 A J-shaped metabolic–speed relationship for swimming. (A) The relationship between metabolic rates (ṀO2) and speed is predicted
to be J- or U-shaped because fishes may experience high postural costs at low speeds, and high drag as speed increases. We should expect
to find an intermediate optimal speed (Uopt) at which swimming is relatively economical. (B) Fishes may take advantage of a group
formation during schooling to reduce the costs of swimming (curve shifts down, orange dotted line) or to swim faster more efficiently
(Uopt shifts towards the right, teal dotted line).

sets show extrapolation of resting metabolic rates at
speed = 0 from swimming data, which can be signifi-
cantly different from empirically obtained rates (Lee et
al. 2003). The reason is that extrapolation from swim-
ming data ignores the elevated postural costs during
hovering when compared to resting, and in fact some
fishes may allow extreme rolling of their body to save
energy during resting periods (Ciancio et al. 2016).
Even fishes with a swim bladder may need to contin-
uously move their fins to avoid rolling during hover-
ing, and the energy used to execute these movements
should be higher than simply resting (Priede and Hol-
liday 1980; Duthie 1982; Lauder and Madden 2007;
Di Santo et al. 2017b). Several researchers disclosed in
their papers that the lowest speed for swimming exper-
iments (usually around 1 BL/s) was selected based on
the fact that at velocities below 1 BL/s the fish would
swim erratically (Sepulveda et al. 2003, 2007; Behrens
et al. 2006). More work focusing on the energetics and
biomechanics of hovering in a wide range of negatively
and nearly neutrally buoyant fishes may improve our
understanding of the postural costs of “swimming in
place.” Studies on skates (little skate Leucoraja erinacea,
and clearnose skate Raja eglanteria) combined phys-
iological and biomechanical measurements to answer
the question of whether energetics and postural issues
may shape and limit swimming performance (Di Santo
and Kenaley 2016; Di Santo et al. 2017a; Di Santo et al.
2017b). These studies show that at low speeds (<1 BL/s)
fishes significantly increase oxygen consumption dur-
ing swimming when compared to an intermediate Uopt
(∼1.25–1.5 BL/s) and that these increased energetic
costs are attributable to high postural costs to main-
tain equilibrium and to a significant anaerobic compo-

nent of metabolism during steady swimming that is of-
ten ignored in energetics studies (Di Santo and Kena-
ley 2016; Di Santo et al. 2017b). Even though negative
buoyant fishes, such as elasmobranchs, may experience
high costs of locomotion at low speeds due to the ne-
cessity of moving their fins to produce hydrodynamic
lift, data on rainbow trout (Oncorhynchus mykiss) show
that postural costs at low speeds can be detected in fishes
with a swim bladder as well (Di Santo et al. 2017b). At
0.5 BL/s trout assume a positive body angle to the flow
and use their dorsal fin to control body stability, while
at 1.25 BL/s they swim straight into the flow and fold
down their dorsal fin (Di Santo et al. 2017b). As a con-
sequence, metabolic rates at 0.5 BL/s are higher than at
1.25 BL/s and the metabolic–speed curve in trout is J-
shaped (Di Santo et al. 2017b).

Kinematics of swimming influence the costs of loco-
motion, but physiological processes can, in turn, affect
movement. Several studies have shown that the ratio
of lactate produced:disposed increases at intermediate-
to-high speeds (Weber 1991; Peake and Farrell 2004;
Svendsen et al. 2010). The increase of lactate in body
fluids and tissues limits the swimming performance of
fishes (Black et al. 1962; Jain et al. 1998; Kieffer 2000;
Jain and Farrell 2003; Widmer et al. 2006). In addition,
upper sustained speeds might be limited by the body
posture and fin movements that are necessary to cre-
ate thrust. One example is the undulatory movement of
the pectoral fins in batoid fish at high speeds. The up-
per speed limit for benthic batoids, such as skates, seems
to be around 2 BL/s (Rosenberger and Westneat 1999;
Rosenberger 2001; Di Santo et al. 2017a). When tridi-
mensional kinematics of skate swimming are analyzed,
it is apparent that skates’ upper velocity is limited by the
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energy spent by actively stiffening the pectoral fins to
create a notch, or an arc, that travels from anterior to
posterior across the fin margin. Such notch is only no-
ticeable at the maximum sustainable speed for the fish,
suggesting that the limit to benthic batoid locomotion
may be also biomechanical rather than just physiologi-
cal (e.g., the use of anaerobic metabolism) (Di Santo et
al. 2017a).

Schooling behavior is considered fundamental to the
survival of the great majority of fishes, and especially
of forage species (Shaw 1960, 1961, 1962; Couzin and
Krause 2003; Jolles et al. 2017). In fact, schooling be-
havior favors the detection of food and mates, reduces
the risk of predation, and may increase locomotor effi-
ciency (Weihs 1973; Herskin and Steffensen 1998; Ward
and Webster 2016; Papastamatiou et al. 2021). Fish in
schooling formations display extraordinary swimming
coordination, where evenly spaced individuals move in
the same direction and assume parallel positions (Shaw
1962; Weihs 1973; Katz et al. 2011; Ashraf et al. 2017;
Kent et al. 2019). Models suggest that fish maintain a
relatively stable distance among individuals and it is ex-
actly this spacing and how it changes under different
flow and abiotic conditions that determine the hydro-
dynamic effects of individuals swimming in the school
(Weihs 1973; Kent et al. 2019). According to theoret-
ical models, fish may gain a hydrodynamic advantage
by positioning themselves in a diamond configuration
within the aggregation due to the pattern of vortex trails
formed by neighboring swimming fish (Weihs 1973).
Directly behind a swimming fish, the vortex trail has
increased water velocity opposite to the swimming di-
rection but with the slight lateral shift, fish in trailing
positions can benefit of increased velocity in the same
direction as the school is swimming, saving energy asso-
ciated with locomotion (Weihs 1973). At the same time,
recent work showed that also phalanx, where fish swim
side by-side and synchronize their tail beat, and in-line
configurations may correlate with reduced tail beat fre-
quency, a proxy for metabolic expenditure (Ashraf et
al. 2017; Saadat et al. 2021). However, very few studies
to date measured the energetic costs of swimming in a
school (Burgerhout et al. 2013; Currier et al. 2021). En-
ergetic costs of schooling have been difficult to quan-
tify because it is challenging to separate the energet-
ics of locomotion between individuals swimming in the
front and periphery of the school from those swim-
ming behind other fish. Individuals in a formation may
change position, and consequently, the whole school
may have significantly different metabolic rates at the
same speeds when assuming different geometric config-
urations. Although individual metabolic rates are im-
portant, more studies should focus on the school (or
group swimming, including pair and shoaling) as the
“unit” to quantify the effect of collective movement

on energetics. Currier et al. (2021) quantified the ef-
fect of group size on metabolic rates and tail beat fre-
quency in bluegill sunfish (Lepomis macrochirus) and
rainbow trout. When bluegill sunfish swim in groups
their metabolic rates and tail beat frequency decrease,
while the opposite effect has been quantified in trout
across speeds (Currier et al. 2021). Unlike forage fishes,
trout and bluegill sunfish do not strictly school, but
it is possible that bluegill sunfish may take advantage
of the group formation by decreasing the interindivid-
ual distance as seen in other species, such as zebrafish
(Danio rerio) and rainbowfish (Family: Melanotaenia)
(Wiwchar et al. 2018; Kent et al. 2019). I can there-
fore imagine that future studies may consider the role
of the shape and volume of the formation on swim-
ming aerobic performance and biomechanics. For in-
stance, can fishes increase their Uopt by swimming in a
school? Do schools reduce the metabolic rates of indi-
vidual fish with no increase in Uopt (Fig. 2)? Prelimi-
nary work suggests that swimming in a school could in-
crease the optimal swimming speed in Inland silverside
Menidia beryllina (Di Santo and Lauder 2019, 2021).
When oxygen consumption rates were measured in a
small school (n = 3 individuals per school) of Barents
Sea capelins (Mallotus villosus), fish showed difficulties
swimming at speeds below 1 BL/s (Behrens et al. 2006).
This detail not only suggests that low speeds may be dif-
ficult to test, but also that there might be a minimum
number of individuals in a school that is needed to pro-
vide the energetic advantage of group swimming (Li
et al. 2019; Currier et al. 2021). Correlations between
tail beat frequency and metabolic rates can provide a
good proxy for energetic expenditure and may be used
instead of oxygen consumption measurements when
these are not feasible (Herskin and Steffensen 1998;
Lowe 2001; Ohlberger et al. 2007); however, not all fish
species exhibit a linear relationship between metabolic
rates and tail beat frequency (Leonard et al. 2000; Di
Santo et al. 2017b; Currier et al. 2021), thus quantify-
ing both measurements of energy consumption and tail
beat frequency is preferred.

These two examples show that linking biomechanics
and energetics allows to answer fundamental questions
in animal locomotion such as which factors limit min-
imum and maximum sustainable speeds, which tactics
can organisms employ to expand their performance en-
velope, and which consequences locomotor movements
have on the energetic budget and behavior of organisms
(Fig. 1).

Climate change stressors alter fish
locomotor performance
Recent anthropogenic activity has resulted in the ex-
ponential increase in greenhouse gases (in particular,
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carbon dioxide or CO2, methane or CH4) that has
caused the oceans to become warmer and more acidic
(Doney et al. 2009; Gattuso and Hansson 2011; Collins
et al. 2018; Sadhukhan et al. 2020). The effects of ocean
warming have already been vastly investigated on per-
formance and behavior of fishes, with studies on ocean
acidification following behind (Belkin 2009; Ryu et al.
2018; Clark et al. 2020). Studies on the effect of tem-
perature on metabolic rates have proliferated as temper-
ature, considered the “abiotic master factor”, has pro-
found effects on fish physiology (Fry 1967; Angilletta
2009). In fact, nearly every physiological process is af-
fected by temperature, and it is not surprising there-
fore, that fishes may use temperature as an ecological re-
source by exploiting thermal gradients to enhance phys-
iological performance (Di Santo and Bennett 2011a;
Krehl and Soetbeer 1899; Fry 1967; Magnuson et al.
1979; Wardle 1980; Jain and Farrell 2003; DiGirolamo
et al. 2012).

Warming can enhance locomotor performance be-
cause muscle efficiency increases with temperature (Di
Santo and Bennett 2011b; Johnston et al. 1990; Sims
et al. 2006; DiGirolamo et al. 2012). For instance,
fishes might reduce contraction times at higher tem-
peratures, thereby increasing speed during burst swim-
ming even when maintaining the same stride length
(Wardle 1980; Wardle et al. 1995). This process might at
least be partially responsible for the high performance
of fast swimming species such as barracudas and tu-
nas (Wardle 1980). Several studies have now demon-
strated that warming can enhance escape responses in
teleost fishes (Johnston et al. 1991; Wilson et al. 2001;
Fernández et al. 2002; Lyon et al. 2008). However, my-
otomes may have limited capacity to adjust to changes in
temperature, and locomotor performance may show no
compensation with acclimation (Coughlin et al. 2020).
The effect of warming on escape performance has been
tested on one elasmobranch, the little skate (Di Santo
2016). In this study, skates showed local adaptation
in temperature-performance curves. Skates from two
neighboring locations (O’Connell et al. 2019) exhibit
different thermal optima for endurance and number
of bursts, with one population performing better un-
der warming of 3◦C when compared to currently expe-
rienced temperatures (Di Santo 2016). However, both
populations show a decline in intensity of bursts and
prolonged recovery time with 5◦C warming suggest-
ing that high power movements may become limited at
temperatures expected by the end of the century (IPCC
2014; Di Santo 2016; Pinsky et al. 2019). It is also pos-
sible that the biomechanical advantage given by higher
muscle contractility may not necessarily translate into
higher escape performance; however, warming can af-
fect other morphological structures, such as an increase

in number of vertebrae which can produce greater lin-
ear displacements and higher speeds during escape re-
sponses (Ackerly and Ward 2016).

Temperature may reduce endurance and increase
the costs of steady swimming across speeds (Brett
1967; Steinhausen et al. 2008; McDonnell and Chap-
man 2016). As warming increases the costs of locomo-
tion of individual fish, we expect that fish swimming
in a school may employ tactics to reduce these costs.
However, schooling fishes show a lower degree of cohe-
siveness and polarization with warming (Bartolini et al.
2015; Davis et al. 2019). It is unclear though if the subse-
quent increase in tail beat frequency is the direct conse-
quence of elevated temperatures or rather a side effect of
looser aggregations and the inability to capture the vor-
tices shed by neighboring fish (Weihs 1973; Ashraf et al.
2017; Saadat et al. 2021). If warming causes the disrup-
tion or loosening of the school, then the hydrodynamic
advantages of swimming in a school formation may be
lost.

Ocean acidification, the “other CO2 problem” (Doney
et al. 2009) has a complex effect on fish morphology, lo-
comotion, and behavior (Bignami et al. 2013; Di Santo,
2015, 2019; Clark et al. 2020). For instance, high CO2
levels prolong the time to recover from a chasing event
(Di Santo 2016) and can decrease the maximum speed
reached during swimming (Watson et al. 2018). High
CO2 also increases the energetic costs of burst swim-
ming while decreasing the rate of bursts (Di Santo 2016;
Rummer et al. 2020). This suggests that an increase in
metabolic rates during activity should not necessarily
be interpreted as a positive outcome when the increase
in energy spent does not translate into higher efficacy
(endurance, rate of movement, speed, etc.) of locomo-
tor behavior (Di Santo 2015; Lefevre 2016). The in-
crease in CO2 has been associated with larger otoliths
(Checkley et al. 2009; Bignami et al. 2013; Kwan and
Tresguerres 2022) and higher density of the skeleton
of marine fishes both in the lab and under natural
settings, for instance near CO2 seeps (Di Santo 2019;
Mirasole et al. 2020). A denser, heavier skeleton may re-
sult in higher costs of swimming (Drucker and Lauder
2000; Wilga and Lauder 2002; Di Santo 2019). How-
ever, other locomotor behaviors such as walking on the
substratum might be enhanced by denser and stronger
“walking fins” allowing more stable and effective ben-
thic movement (Lucifora and Vassallo 2002; Standen
et al. 2014; Di Santo 2019). Ocean acidification is also
known to corrode denticles of sharks (Dziergwa et al.
2019), thus potentially reducing the locomotor advan-
tages provided by a non-smooth body surface (Domel
et al. 2018; Muthuramalingam et al. 2019).

On the other hand, fishes can fully compensate for
CO2-induced respiratory acidosis and restore blood pH
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by flux of H+ and HCO3
− using their gills (Claiborne

and Evans 1992; Claiborne et al. 2002; Damsgaard et
al. 2015; Wright and Wood 2015; Brauner et al. 2019;
Kwan and Tresguerres 2022). The rate and to what ex-
tent acid–base compensation is reached when fishes are
exposed to elevated CO2 depends on a variety of factors,
including water ion composition and the upper limit of
increase in plasma (Brauner et al. 2019). Many fishes
that naturally live under high or fluctuating CO2 condi-
tions seem to possess an exceptional capacity for intra-
cellular pH regulation, and it is therefore not surprising
that ocean acidification effects might be less significant
in such fish populations (Couturier et al. 2013; Heinrich
et al. 2016; Rosa et al. 2017; Clark et al. 2020). For
instance, the swimming performance of Atlantic cod
(Gadus morhua) larvae is largely unaffected by ocean
acidification (Maneja et al. 2013, 2015). Atlantic silver-
side (Menidia menidia) experience high seasonal fluctu-
ations in pH and embryos developing later in the season
under high CO2 are the least sensitive to ocean acid-
ification (Baumann et al. 2018; Murray and Baumann
2018; Baumann 2019). Escape response in larval yellow-
tail kingfish (Seriola lalandi) was affected to a greater de-
gree by warming than acidification (Watson et al. 2018).
In fact, CO2 had no significant effect on the latency of
reaction to startle stimuli or maximum speed in king-
fish (Watson et al. 2018). Although physiological mech-
anisms of acid–base control are well studied, we still
lack large body of evidence linking acidosis compensa-
tion and swimming mechanics and performance under
ocean acidification.

The future of EcoPhysioMechanics
EcoPhysioMechanics studies offer the opportunity to
understand the consequences of changes in the environ-
ment on swimming mechanics and energetics. Move-
ment and energetics are intimately connected and quan-
tifying the costs of different locomotor behaviors and
the biomechanics of movement across a range of envi-
ronmental factors can provide a much clearer picture
of the limits of performance and acclimation potential.
Working within a unifying approach that integrates the
fields of eco-physiology and biomechanics produces a
framework that benefits the work of not only physi-
ologists and biomechanists, but also of climate change
and conservation biologists, ecologists, and engineers as
these can predict locomotor performance and its con-
sequences under different conditions (Fig. 1). Progress
towards this framework requires that more studies com-
bine measurements of morphology, kinematics, and en-
ergetics of fish swimming under different abiotic condi-
tions, in the lab as well as in the wild (Long Jr et al. 2010;
Lauder and Di Santo 2015; Porter et al. 2020; Lauer

et al. 2022). This approach will favor the identification
of physiotypes and morphotypes that might be vulner-
able or resilient to rapid changes in the environment
(Somero 2010; Byrne and Przeslawski 2013; Couturier
et al. 2013; Vilmar and Di Santo 2022).
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